首页> 外文期刊>Wireless Communications, IEEE Transactions on >A Robust Indoor Positioning System Based on the Procrustes Analysis and Weighted Extreme Learning Machine
【24h】

A Robust Indoor Positioning System Based on the Procrustes Analysis and Weighted Extreme Learning Machine

机译:基于Procrustes和加权极限学习机的鲁棒室内定位系统。

获取原文
获取原文并翻译 | 示例

摘要

Indoor positioning system (IPS) has become one of the most attractive research fields due to the increasing demands on location-based services (LBSs) in indoor environments. Various IPSs have been developed under different circumstances, and most of them adopt the fingerprinting technique to mitigate pervasive indoor multipath effects. However, the performance of the fingerprinting technique severely suffers from device heterogeneity existing across commercial off-the-shelf mobile devices (e.g., smart phones, tablet computers, etc.) and indoor environmental changes (e.g., the number, distribution and activities of people, the placement of furniture, etc.). In this paper, we transform the received signal strength (RSS) to a standardized location fingerprint based on the Procrustes analysis, and introduce a similarity metric, termed signal tendency index (STI), for matching standardized fingerprints. An analysis of the capability of the proposed STI to handle device heterogeneity and environmental changes is presented. We further develop a robust and precise IPS by integrating the merits of both the STI and weighted extreme learning machine (WELM). Finally, extensive experiments are carried out and a performance comparison with existing solutions verifies the superiority of the proposed IPS in terms of robustness to device heterogeneity.
机译:由于对室内环境中的基于位置的服务(LBS)的需求不断增长,室内定位系统(IPS)已成为最有吸引力的研究领域之一。在不同情况下已经开发了各种IPS,并且大多数IPS采用指纹技术来减轻普遍的室内多径效应。然而,指纹技术的性能严重受到商业现成的移动设备(例如,智能手机,平板电脑等)中存在的设备异质性以及室内环境变化(例如,人员的数量,分布和活动)的影响,家具的放置等)。在本文中,我们基于Procrustes分析将接收到的信号强度(RSS)转换为标准化的位置指纹,并引入了一种相似性度量,称为信号趋势指数(STI),用于匹配标准化的指纹。提出了对拟议的STI处理设备异质性和环境变化的能力的分析。通过整合STI和加权极限学习机(WELM)的优点,我们进一步开发了强大而精确的IPS。最后,进行了广泛的实验,并且与现有解决方案的性能比较验证了所提出的IPS在针对设备异构性的鲁棒性方面的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号