首页> 外文期刊>IEEE transactions on wireless communications >Age of Information Driven Cache Content Update Scheduling for Dynamic Contents in Heterogeneous Networks
【24h】

Age of Information Driven Cache Content Update Scheduling for Dynamic Contents in Heterogeneous Networks

机译:信息驱动的年龄缓存异构网络中动态内容的高速缓存内容更新调度

获取原文
获取原文并翻译 | 示例

摘要

The recent development in mobile edge computing necessitates caching of dynamic contents, where new versions of contents become available around-the-clock, thus timely update is required to ensure their relevance. The age of information (AoI) is a performance metric that evaluates the freshness of contents. Existing works on AoI-optimization of cache content update algorithms focus on minimizing the long-term average AoI of all cached contents. Sometimes, user requests that need to be served in the future are known in advance and can be stored in user request queues. In this paper, we propose dynamic cache content update scheduling algorithms that exploit the user request queues. We consider a use case, where the trained neural networks (NNs) from deep learning models are being cached in a heterogeneous network (HetNet), as a motivating example. A queue-aware cache content update scheduling algorithm based on constrained Markov decision process (CMDP) is developed to minimize the average AoI of the dynamic contents delivered to the users. By using enforced decomposition technique and deep reinforcement learning, we propose two low-complexity suboptimal scheduling algorithms. Simulation results show that our proposed algorithms outperform the periodic cache content update scheme and reduce the average AoI by up to 30%.
机译:移动边缘计算中最近的开发需要缓存动态内容,其中新版本的内容可用于时钟可用,因此需要及时更新以确保其相关性。信息时代(AOI)是一种评估内容的新鲜度的性能指标。 AOI优化的现有工作高速缓存内容更新算法侧重于最小化所有缓存内容的长期平均值AOI。有时,需要在将来需要服务的用户请求提前已知并且可以存储在用户请求队列中。在本文中,我们提出了利用用户请求队列的动态缓存内容更新调度算法。我们考虑一种用例,其中来自深度学习模型的训练的神经网络(NNS)正在被缓存在异构网络(HetNet)中,作为激励例子。开发了一种基于受约束的马尔可夫决策过程(CMDP)的队列感知高速缓存内容更新调度调度算法以最小化传送给用户的动态内容的平均AOI。通过使用强制分解技术和深度加强学习,我们提出了两个低复杂性的次优调度算法。仿真结果表明,我们所提出的算法优于周期性缓存内容更新方案,并将平均AOI缩短高达30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号