首页> 外文期刊>IEEE transactions on wireless communications >Centralized and Distributed Deep Reinforcement Learning Methods for Downlink Sum-Rate Optimization
【24h】

Centralized and Distributed Deep Reinforcement Learning Methods for Downlink Sum-Rate Optimization

机译:用于下行链路和速率优化的集中和分布式深度加强学习方法

获取原文
获取原文并翻译 | 示例

摘要

For a multi-cell, multi-user, cellular network downlink sum-rate maximization through power allocation is a nonconvex and NP-hard optimization problem. In this article, we present an effective approach to solving this problem through single- and multi-agent actor-critic deep reinforcement learning (DRL). Specifically, we use finite-horizon trust region optimization. Through extensive simulations, we show that we can simultaneously achieve higher spectral efficiency than state-of-the-art optimization algorithms like weighted minimum mean-squared error (WMMSE) and fractional programming (FP), while offering execution times more than two orders of magnitude faster than these approaches. Additionally, the proposed trust region methods demonstrate superior performance and convergence properties than the Advantage Actor-Critic (A2C) DRL algorithm. In contrast to prior approaches, the proposed decentralized DRL approaches allow for distributed optimization with limited CSI and controllable information exchange between BSs while offering competitive performance and reduced training times.
机译:对于多单元,多用户,通过功率分配的蜂窝网络下行链路和速率最大化是非凸起和NP-Hard优化问题。在本文中,我们通过单次和多功能演员 - 评论家(DRL)提出了一种解决这个问题的有效方法。具体而言,我们使用有限地平线信任区域优化。通过广泛的模拟,我们表明我们可以同时实现比最先进的优化算法相当更高的光谱效率,如加权最小均方误差(WMMSE)和分数编程(FP),同时提供超过两个订单的执行时间幅度比这些方法快。此外,拟议的信任区域方法表明了比优势演员 - 评论家(A2C)DRL算法的优越性和收敛性。与现有方法相比,建议的分散式DRL方法允许与有限的CSI和BSS之间的可控信息交换进行分布式优化,同时提供竞争性能和减少培训时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号