首页> 外文期刊>IEEE transactions on wireless communications >Evolution Matters: Content Transmission in Evolving Wireless Social Networks
【24h】

Evolution Matters: Content Transmission in Evolving Wireless Social Networks

机译:进化事项:在不断发展的无线社交网络中的内容传输

获取原文
获取原文并翻译 | 示例

摘要

With the popularization of smart devices and social platforms (Facebook, Instagram and etc.), content transmission is becoming an increasingly prevalent form of human interaction with transmission time being a critical issue in miscellaneous applications. Extensive works have been devoted to this problem with the typical assumption that the network is non-evolving. In contrast, real-world networks which the transmission runs through are widely observed to be evolving over time and thus display distinctive properties. In this paper, we make the first study of content transmission in evolving networks. Particularly, we focus on the specific transmission time of the content, which is an important performance metric. For a comprehensive analysis, we consider both static and mobile cases. The network evolves in the following sense: each new user randomly chooses a geographic location while establishing social relations with existing users according to the evolving model, called Affiliation Networks. The transmission scheme running on the network exploits both social relationships and geographic information. While revealing the microscopic property of evolving social networks as the basis, in both static and mobile cases we manage to bound the transmission time in evolving networks which departs from results in non-evolving networks. In both cases, we find that the transmission time in evolving networks is smaller than the non-evolving counterpart under our scheme, and the gap is constantly increasing over time. Especially, the mobile case obtains such gain with less geographic knowledge. The theoretical findings are confirmed by experiments on both synthetic and real networks under different settings. We find that transmission time in evolving networks is smaller than non-evolving counterparts under the tested settings, and our proposed algorithms outperform the baselines.
机译:随着智能设备和社交平台(Facebook,Instagram等)的推广,内容传输正在成为人类交互的越来越普遍的形式,传输时间是杂项应用中的关键问题。通过网络不发展的典型假设,广泛的作品已经致力于这个问题。相反,传输通过的现实网络被广泛观察到在随着时间的推移中发展,从而显示出独特的特性。在本文中,我们在不断发展的网络中进行了第一研究内容传输。特别是,我们专注于内容的特定传输时间,这是一个重要的性能度量。有关综合分析,我们考虑静态和移动案例。网络在以下意义上发展:每个新用户随机选择地理位置,同时根据不断发展的模型建立与现有用户的社会关系,称为隶属网络。在网络上运行的传输方案利用社交关系和地理信息。虽然揭示了社交网络的显微性质,作为社交网络的基础,在静态和移动案例中,我们设法在不断发展的网络中离开导向的不断发展的网络中绑定传输时间。在这两种情况下,我们发现不断发展的网络中的传输时间小于我们方案下的非不断变化的对应力,并且随着时间的推移,间隙不断增加。特别是,移动案例获得了较少地理知识的这种增益。理论发现通过在不同设置下的合成和真实网络上的实验确认。我们发现,在经过测试的设置下,不断发展的网络中的传输时间小于非不断变化的对应物,我们所提出的算法优于基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号