首页> 外文期刊>IEEE transactions on wireless communications >Power Allocation in Multi-User Cellular Networks: Deep Reinforcement Learning Approaches
【24h】

Power Allocation in Multi-User Cellular Networks: Deep Reinforcement Learning Approaches

机译:多用户蜂窝网络中的功率分配:深增强学习方法

获取原文
获取原文并翻译 | 示例

摘要

The model-based power allocation has been investigated for decades, but this approach requires mathematical models to be analytically tractable and it has high computational complexity. Recently, the data-driven model-free approaches have been rapidly developed to achieve near-optimal performance with affordable computational complexity, and deep reinforcement learning (DRL) is regarded as one such approach having great potential for future intelligent networks. In this paper, a dynamic downlink power control problem is considered for maximizing the sum-rate in a multi-user wireless cellular network. Using cross-cell coordinations, the proposed multi-agent DRL framework includes off-line and on-line centralized training and distributed execution, and a mathematical analysis is presented for the top-level design of the near-static problem. Policy-based REINFORCE, value-based deep Q-learning (DQL), actor-critic deep deterministic policy gradient (DDPG) algorithms are proposed for this sum-rate problem. Simulation results show that the data-driven approaches outperform the state-of-art model-based methods on sum-rate performance. Furthermore, the DDPG outperforms the REINFORCE and DQL in terms of both sum-rate performance and robustness.
机译:几十年来研究了基于模型的功率分配,但这种方法需要数学模型进行分析易行,并且具有高的计算复杂性。最近,已经迅速开发了数据驱动的无模型方法,以实现具有实惠的计算复杂性的近乎最佳性能,并且深度增强学习(DRL)被认为是一种具有巨大智能网络潜力的一种方法。在本文中,考虑了动态下行链路功率控制问题,用于最大化多用户无线蜂窝网络中的SUM速率。使用跨电池协调,所提出的多代理DRL框架包括离线和在线集中式训练和分布式执行,并为近静态问题的顶级设计提供了数学分析。基于策略的强化,基于价值的深度Q学习(DQL),Actor-批评深度确定性政策梯度(DDPG)算法被提出了该和率问题。仿真结果表明,数据驱动方法优于基于最先进的模型 - 基于模型的方法。此外,DDPG在SUM速率性能和鲁棒性方面优于增强和DQL。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号