首页> 外文期刊>IEEE transactions on wireless communications >Multiuser Computation Offloading and Downloading for Edge Computing With Virtualization
【24h】

Multiuser Computation Offloading and Downloading for Edge Computing With Virtualization

机译:使用虚拟化的多用户计算卸载和下载边缘计算

获取原文
获取原文并翻译 | 示例

摘要

Mobile-edge computing (MEC) is an emerging technology for enhancing the computational capabilities of the mobile devices and reducing their energy consumption via offloading complex computation tasks to the nearby servers. Multiuser MEC at servers is widely realized via parallel computing based on virtualization. Due to finite shared I/O resources, interference between virtual machines (VMs), called I/O interference, degrades the computation performance. In this paper, we study the problem of joint radio-and-computation resource allocation (RCRA) in multiuser MEC systems in the presence of I/O interference. Specifically, offloading scheduling algorithms is designed targeting two system performance metrics: sum offloading rate maximization and sum mobile energy consumption minimization. Their designs are formulated as non-convex mixed-integer programming problems, which account for latency due to offloading, result downloading, and parallel computing. A set of low-complexity algorithms are designed based on a decomposition approach and leveraging classic techniques from combinatorial optimization. The resultant algorithms jointly schedule offloading users, control their offloading sizes, and divide time for communication (offloading and downloading) and computation. They are either optimal or can achieve close-to-optimality as shown by simulation. The comprehensive simulation results demonstrate that considering of I/O interference can endow on an offloading controller robustness against the performance-degradation factor.
机译:移动边缘计算(MEC)是一种用于增强移动设备的计算能力并通过将复杂的计算任务卸载到附近的服务器来降低其能量消耗的新兴技术。 Servers的多用户MEC通过基于虚拟化的并行计算广泛实现。由于有限的I / O资源,虚拟机(VM)之间的干扰,称为I / O干扰,降低了计算性能。在本文中,我们在存在I / O干扰的情况下研究了多用户MEC系统中联合无线电和计算资源分配(RCRA)的问题。具体地,卸载调度算法设计了两个系统性能度量:SUM卸载率最大化和和移动能耗最小化。它们的设计被制定为非凸混合整数编程问题,这是由于卸载,结果下载和并行计算导致的延迟。基于分解方法和利用组合优化的经典技术设计了一组低复杂性算法。结果算法联合安排卸载用户,控制其卸载大小,并划分通信(卸载和下载)和计算的时间。它们是最佳的或可以实现近距离最优,如模拟所示。综合性仿真结果表明,考虑I / O干扰可以赋予卸载控制器对性能降级因子的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号