首页> 外文期刊>IEEE transactions on wireless communications >Joint Antenna Selection and Hybrid Beamformer Design Using Unquantized and Quantized Deep Learning Networks
【24h】

Joint Antenna Selection and Hybrid Beamformer Design Using Unquantized and Quantized Deep Learning Networks

机译:使用未量化和量化的深度学习网络进行联合天线选择和混合波束成形器设计

获取原文
获取原文并翻译 | 示例

摘要

In millimeter-wave communications, multiple-input-multiple-output (MIMO) systems use large antenna arrays to achieve high gain and spectral efficiency. These massive MIMO systems employ hybrid beamformers to reduce power consumption associated with fully digital beamforming in large arrays. Further savings in cost and power are possible through the use of subarrays. Unlike prior works that resort to large latency methods such as optimization and greedy search for subarray selection, we propose a deep-learning-based approach in order to overcome the complexity issue without causing significant performance loss. We formulate antenna selection and hybrid beamformer design as a classification/prediction problem for convolutional neural networks (CNNs). For antenna selection, the CNN accepts the channel matrix as input and outputs a subarray with optimal spectral efficiency. The resultant subarray channel matrix is then again fed to a CNN to obtain analog and baseband beamformers. We train the CNNs with several noisy channel matrices that have different channel statistics in order to achieve a robust performance at the network output. Numerical experiments show that our CNN framework provides an order better spectral efficiency and is 10 times faster than the conventional techniques. Further investigations with quantized-CNNs show that the proposed network, saved in no more than 5 bits, is also suited for digital mobile devices.
机译:在毫米波通信中,多输入多输出(MIMO)系统使用大型天线阵列来实现高增益和频谱效率。这些大规模MIMO系统采用混合波束成形器来减少与大型阵列中全数字波束成形相关的功耗。通过使用子阵列,可以进一步节省成本和功耗。与先前采用大时延方法(例如优化和贪婪搜索子阵列选择)的工作不同,我们提出了一种基于深度学习的方法,以克服复杂性问题而不会造成明显的性能损失。我们将天线选择和混合波束成形器设计公式化为卷积神经网络(CNN)的分类/预测问题。对于天线选择,CNN接受信道矩阵作为输入,并输出具有最佳频谱效率的子阵列。然后将所得的子阵列通道矩阵再次馈入CNN,以获得模拟和基带波束形成器。我们使用具有不同信道统计信息的几种嘈杂信道矩阵来训练CNN,以在网络输出端实现强大的性能。数值实验表明,我们的CNN框架可提供更好的光谱效率,并且比传统技术快10倍。对量化CNN的进一步研究表明,所建议的网络以不超过5位的速率保存,也适用于数字移动设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号