首页> 外文期刊>Water resources research >Approximating snow surface temperature from standard temperature and humidity data: New possibilities for snow model and remote sensing evaluation
【24h】

Approximating snow surface temperature from standard temperature and humidity data: New possibilities for snow model and remote sensing evaluation

机译:从标准温度和湿度数据估算雪表面温度:雪模型和遥感评估的新可能性

获取原文
获取原文并翻译 | 示例
           

摘要

Snow surface temperature (T_s) is important to the snowmelt energy balance and land-atmosphere interactions, but in situ measurements are rare, thus limiting evaluation of remote sensing data sets and distributed models. Here we test simple T_s approximations with standard height (2-4 m) air temperature (T_a), wet-bulb temperature (T_w), and dew point temperature (T_d), which are more readily available than T_s. We used hourly measurements from seven sites to understand which T_s approximation is most robust and how T_s representation varies with climate, time of day, and atmospheric conditions (stability and radiation). T_d approximated T_s with the lowest overall bias, ranging from -2.3 to +2.6℃ across sites and from -2.8 to 1.5℃ across the diurnal cycle. Prior studies have approximated T_s with T-a, which was the least robust predictor of T_s at all sites. Approximation of T_s with T_d was most reliable at night, at sites with infrequent clear sky conditions, and at windier sites (i.e., more frequent turbulent instability). We illustrate how mean daily T_d can help detect surface energy balance bias in a physically based snowmelt model. The results imply that spatial T_d data sets may be useful for evaluating snow models and remote sensing products in data sparse regions, such as alpine, cold prairie, or Arctic regions. To realize this potential, more routine observations of humidity are needed. Improved understanding of T_d variations will advance understanding of T_s in space and time, providing a simple yet robust measure of snow surface feedback to the atmosphere.
机译:雪面温度(T_s)对于融雪能量平衡和陆地-大气相互作用很重要,但是实地测量很少,因此限制了对遥感数据集和分布式模型的评估。在这里,我们用标准高度(2-4 m)的空气温度(T_a),湿球温度(T_w)和露点温度(T_d)来测试简单的T_s近似值,这些近似值比T_s更容易获得。我们使用来自七个站点的每小时测量值来了解哪种T_s近似最可靠,以及T_s表示如何随气候,一天中的时间和大气条件(稳定性和辐射)变化。 T_d近似于T_s,具有最低的总体偏差,整个站点的范围从-2.3到+ 2.6℃,整个昼夜周期的范围从-2.8到1.5℃。先前的研究已经用T-a估算了T_s,这是所有站点上T_s的最不可靠的预测因子。在夜晚,晴空条件不常见的地方和多风的地方(即湍流不稳定的频率更高),用T_d近似T_s是最可靠的。我们说明在基于物理的融雪模型中,每日T_d的平均值如何帮助检测表面能平衡偏差。结果表明,空间T_d数据集可用于评估数据稀疏区域(例如高山,寒冷大草原或北极地区)的雪模型和遥感产品。为了实现这一潜力,需要对湿度进行更多常规观察。更好地了解T_d变化将促进对T_s在空间和时间上的理解,从而提供一种简单而稳健的措施来衡量雪面对大气的反馈。

著录项

  • 来源
    《Water resources research》 |2013年第12期|8053-8069|共17页
  • 作者单位

    National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301, USA;

    Center for Snow and Avalanche Studies, Silverton, Colorado, USA;

    Department of Geoscience, University of Calgary, Calgary, Alberta,Canada;

    Centre for Cold Regions and Water Science, Wilfrid Laurier University, Waterloo, Ontario, Canada;

    Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号