首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model
【24h】

Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model

机译:利用来自串联极地轨道卫星的热观测资料,对无雪皮肤表面下的土壤温度进行遥感:一个三尺度分析模型

获取原文
获取原文并翻译 | 示例
           

摘要

Subsurface soil temperature is a key variable of land surface processes and not only responds to but also modulates the interactions of energy fluxes at the Earth's surface. Thermal remote sensing has traditionally been regarded as incapable of detecting the soil temperature beneath the skin-surface. This study shows that thermal remote sensing can be used to estimate soil temperatures. Our results provide insights into thermal observations collected with tandem polar-orbiting satellites when used toward obtaining soil temperatures under clear-sky conditions without the use of any ground-based information or field-measured soil properties. We designed an analytical three-time-scale (3-scale, for short) model, dividing the annual cycle of soil temperatures into three subcycles: the annual temperature cycle (ATC), which represents the daily-averaged temperature; the diurnal temperature cycle (DTC), which represents the instantaneous temperature; and the weatherchange temperature cycle (WTC), which is divided into two parts to represent both the daily-averaged (WT_(Cavg)) and the instantaneous temperature (WTC_(inst)). The DTC and WTC_(inst) were further parameterized into four undetermined variables, including the daily-averaged temperature, thermal inertia, upward surface flux factor, and day-to-day change rate. Thus, under clear-sky conditions, the four thermal measurements in a diurnal cycle recorded with tandem polar-orbiting satellites are sufficient for reconstructing the DTC of both land surface and soil temperatures. Polar-orbiting satellite data from MODIS are used to show the model's capability. The results demonstrate that soil temperatures with a spatial resolution of 1 km under snow-free conditions can be generated at any time of a clear-sky day. Validation is performed by using a comparison between the MODIS-inverted and ground-based soil temperatures. The comparison shows that the accuracy of inverted soil temperatures lies between 0.3 and 2.5 K with an average of approximately 1.5 K. These results open a new frontier in the application of thermal remote sensing wherein soil temperatures with high spatial and temporal resolutions can be remotely estimated.
机译:地下土壤温度是陆地表面过程的关键变量,它不仅对地球表面的能量通量做出反应,而且调节地球表面能量通量的相互作用。传统上,热遥感被认为无法检测皮肤表面以下的土壤温度。这项研究表明,热遥感可用于估算土壤温度。我们的结果提供了对在不使用任何地面信息或实地测量的土壤而用于在晴朗的天空条件下获取土壤温度时使用串联的极地轨道卫星收集的热观测的见解。我们设计了一个三时间尺度的解析模型(简称3尺度),将土壤温度的年度周期分为三个子周期:年度温度周期(ATC),它代表每日平均温度;第二个周期是土壤温度。日温度循环(DTC),代表瞬时温度;天气变化温度周期(WTC)分为两部分,分别代表日平均温度(WT_(Cavg))和瞬时温度(WTC_(inst))。将DTC和WTC_(inst)进一步参数化为四个未确定的变量,包括日平均温度,热惯性,向上表面通量因子和日常变化率。因此,在晴朗的天空条件下,用串联极地轨道卫星记录的昼夜周期内的四个热测量值足以重建地表温度和土壤温度的DTC。来自MODIS的极轨卫星数据用于显示模型的能力。结果表明,在晴朗的天空的任何时间都可以产生在无雪条件下空间分辨率为1 km的土壤温度。通过使用MODIS反演的和地面土壤温度之间的比较来进行验证。比较表明,土壤温度反演的精度在0.3到2.5 K之间,平均约为1.5K。这些结果为热遥感的应用开辟了一个新的领域,其中可以远程估算具有高时空分辨率的土壤温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号