首页> 外文期刊>Water Research >Molecular identification guided process design for advanced treatment of electroless nickel plating effluent
【24h】

Molecular identification guided process design for advanced treatment of electroless nickel plating effluent

机译:用于化学镀镍废水深度处理的分子鉴定指导工艺设计

获取原文
获取原文并翻译 | 示例
           

摘要

It has been long desired but challenging to forward the advanced treatment of wastewater from empirical trials towards scientific design due to the lack of molecular insight into the pollutants of concern. Herein, we first established a systematic methodology to identify the ligands of Ni(II)complexes in an electroless nickel (EN) plating effluent. The presence of N-containing groups in the ligands of most Ni(II)-complexes was verified by time-aligned ICP-MS and ESI-HRMS, implying the suitability of autocatalytic ozonation for efficient decomplexation. Thereby, a combined process was proposed on the basis of ozonation to achieve over 83% decomplexation of Ni(II) (initially at 036 mg/L), followed by selective Ni(II) sequestration for resource recovery. Combinational LC-MS systems revealed the ozonation-induced fragmentation or elimination of most Ni(II)-complexes as well as the structural change of the residual complexed molecules. The released free Ni(II) was further sequestrated by a nanocomposite of hydrated Zr(IV) oxide confined in a polymeric cation exchanger (nHZO@PCE). The fixed-bed working capacity of nHZO@PCE (similar to 550 BV) for the ozonated EN plating effluent was over 18 times that of the cation exchanger host (similar to 30 BV) at the breakthrough point of 0.10 mg Ni/L More attractively, five adsorption-regeneration cycles demonstrated the great potential of the hybrid adsorbent for sustainable utilization. This study is believed to shed new light on how to design rational processes for advanced treatment of real wastewater based on molecular identification. (C) 2019 Elsevier Ltd. All rights reserved.
机译:由于缺乏对所关注污染物的分子洞察力,长期以来一直期望将废水的高级处理从经验试验转向科学设计,但是这具有挑战性。在这里,我们首先建立了一种系统的方法来鉴定化学镀镍(EN)废水中Ni(II)配合物的配体。通过时间校准的ICP-MS和ESI-HRMS验证了大多数Ni(II)配合物的配体中含氮基团的存在,这暗示了自动催化臭氧化技术对于有效分解的适用性。因此,在臭氧化的基础上,提出了一种联合工艺以实现Ni(II)的络合度超过83%(最初为036 mg / L),然后选择性地隔离Ni(II)进行资源回收。组合LC-MS系统揭示了臭氧化诱导的大多数Ni(II)配合物的断裂或消除,以及残留的复合分子的结构变化。释放出来的游离Ni(II)被封闭在聚合阳离子交换剂(nHZO @ PCE)中的水合Zr(IV)氧化物的纳米复合材料进一步隔离。在0.10 mg Ni / L的突破点上,nHZO @ PCE(相当于550 BV)对臭氧化的EN电镀废水的固定床工作能力是阳离子交换剂主体(类似于30 BV)的18倍以上。 ,五个吸附再生循环证明了杂化吸附剂在可持续利用方面的巨大潜力。相信这项研究为如何基于分子识别设计合理的流程进行实际废水深度处理提供了新的思路。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号