...
首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >High-Performance COTS FPGA SoC for Parallel Hyperspectral Image Compression With CCSDS-123.0-B-1
【24h】

High-Performance COTS FPGA SoC for Parallel Hyperspectral Image Compression With CCSDS-123.0-B-1

机译:高性能COTS FPGA SOC,用于平行高光谱图像压缩,CCSDS-123.0-B-1

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nowadays, hyperspectral imaging is recognized as a cornerstone remote sensing technology. Next generation, high-speed airborne, and space-borne imagers have increased resolution, resulting in an explosive growth in data volume and instrument data rate in the range of gigapixel per second. This competes with limited on-board resources and bandwidth, making hyperspectral image compression a mission critical on-board processing task. At the same time, the “new space” trend is emerging, where launch costs decrease, and agile approaches are exploited building smallsats using commercial-off-the-shelf (COTS) parts. In this contribution, we introduce a high-performance parallel implementation of the CCSDS-123.0-B-1 hyperspectral compression algorithm targeting SRAM field-programmable gate array (FPGA) technology. The architecture exploits image segmentation to provide the robustness to data corruption and enables scalable throughput performance by leveraging segment-level parallelism. Furthermore, we exploit the capabilities of a COTS FPGA system-on-chip (SoC) device to optimize size, weight, power, and cost (SWaP-C). The architecture partitions a hyperspectral cube stored in a DRAM framebuffer into segments, compressing them in parallel using a flexible software scheduler hosted in the SoC CPU and several compressor accelerator cores in the FPGA fabric. A 5-core implementation demonstrated on a Zynq-7045 FPGA achieves a throughput performance of 1387 Msamples/s [22.2 Gb/s at 16 bits per pixel per band (bpppb)] and outperforms previous implementations in equivalent FPGA technology, allowing seamless integration with next-generation hyperspectral sensors.
机译:如今,高光谱成像被认为是基石遥感技术。下一代,高速空气传播和空间传播的成像器具有更高的分辨率,导致数据量和仪器数据速率的爆炸性增长,每秒千兆像千兆一样。这与有限的板载资源和带宽竞争,使高光谱图像压缩成为关键的板载处理任务。与此同时,“新空间”趋势正在出现,其中发射成本减少,利用商业现货(婴儿床)零件利用敏捷方法。在这一贡献中,我们引入了针对SRAM现场可编程门阵列(FPGA)技术的CCSDS-123.0-B-1高光凝光谱压缩算法的高性能并行实现。该架构利用图像分割来为数据损坏提供稳健性,并通过利用段级并行性来实现可扩展的吞吐量性能。此外,我们利用COTS FPGA系统(SOC)设备的功能,优化尺寸,重量,功率和成本(SWAP-C)。该体系结构将存储在DRAM FrameBuffer中的超光谱多维数据集分区为段,并使用SOC CPU中托管的灵活软件调度程序并行地压缩它们,以及FPGA结构中的几个压缩机加速器核心。在Zynq-7045 FPGA上演示的5核实施实现了1387毫班/秒的吞吐量性能[22.2GB / s,每个像素每像素的每像素(BPPPB)],并且以前的FPGA技术中以前的实现优于与之无缝集成下一代高光谱传感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号