首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >A Built-in Self-Diagnosis and Repair Design With Fail Pattern Identification for Memories
【24h】

A Built-in Self-Diagnosis and Repair Design With Fail Pattern Identification for Memories

机译:具有内存故障模式识别功能的内置自诊断和修复设计

获取原文
获取原文并翻译 | 示例

摘要

With the advent of deep-submicrometer VLSI technology, the capacity and performance of semiconductor memory chips is increasing drastically. This advantage also makes it harder to maintain good yield. Diagnostics and redundancy repair methodologies thus are getting more and more important for memories, including embedded ones that are popular in system chips. In this paper, we propose an efficient memory diagnosis and repair scheme based on fail-pattern identification. The proposed diagnosis scheme can distinguish among row, column, and word faults, and subsequently apply the Huffman compression method for fault syndrome compression. This approach reduces the amount of data that need to be transmitted from the chip under test to the automatic test equipment (ATE) without losing fault information. It also simplifies the analysis that has to be performed on the ATE. The proposed redundancy repair scheme is assisted by fail-pattern identification approach and a flexible redundancy structure. The area overhead for our built-in self-repair (BISR) design is reasonable. Our repair scheme uses less redundancy than other redundancy schemes under the same repair rate requirement. Experimental results show that the area overhead of the BISR design is only 4.1% for an 8 K $times 64$ memory and is in inverse proportion to the memory size.
机译:随着深亚微米VLSI技术的出现,半导体存储芯片的容量和性能急剧增加。该优点还使得难以保持良好的产量。因此,诊断和冗余修复方法对于存储器(包括系统芯片中流行的嵌入式存储器)变得越来越重要。在本文中,我们提出了一种基于故障模式识别的有效内存诊断和修复方案。所提出的诊断方案可以区分行,列和字错误,并随后将霍夫曼压缩方法应用于故障综合症压缩。这种方法减少了需要从被测芯片传输到自动测试设备(ATE)的数据量,而不会丢失故障信息。它还简化了必须在ATE上执行的分析。所提出的冗余修复方案由故障模式识别方法和灵活的冗余结构辅助。我们内置的自我修复(BISR)设计的区域开销是合理的。在相同的修复率要求下,我们的修复方案使用的冗余度比其他冗余方案少。实验结果表明,对于8 K x 64的内存,BISR设计的面积开销仅为4.1%,与内存大小成反比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号