首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Timing Yield Slack for Timing Yield-Constrained Optimization and Its Application to Statistical Leakage Minimization
【24h】

Timing Yield Slack for Timing Yield-Constrained Optimization and Its Application to Statistical Leakage Minimization

机译:时序产量约束优化的时序产量松弛及其在统计泄漏最小化中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on statistical optimization and, more specifically, timing yield (TY)-constrained optimization. For cell replacement in timing-constrained optimization, we need an indicator that examines whether or not a timing violation occurs and gives the available timing for a gate. In deterministic optimization, the timing slack is used for this indicator. Although there is an analogous concept of TY slack in statistical optimization, it has not been well utilized. This paper proposes an effective way to use the TY slack for successful statistical optimization. To achieve this, we present an efficient method to calculate the TY slacks of gates and a strategy that uses timing resources for effective statistical optimization. Based on this work, we propose a novel statistical leakage minimization method that uses the TY slack for a gate change metric. The use of TY-based metrics that are appropriate for statistical design ensures that our method has a better optimization performance at a higher speed. Experimental results on ISCAS-85 benchmark circuits show that the leakage minimization method reduces leakage by 25.2% compared to the statistical benchmark method. In addition, our method has a better runtime when the number of gates is high.
机译:本文着重于统计优化,更具体地说,是时序产量(TY)约束的优化。对于时序受限的优化中的单元替换,我们需要一个指示器来检查是否发生时序违规并给出门的可用时序。在确定性优化中,此指标使用时间松弛。尽管在统计优化中有TY松弛的类似概念,但尚未得到很好的利用。本文提出了一种使用TY松弛进行成功的统计优化的有效方法。为实现此目的,我们提出了一种计算门的TY松弛的有效方法,以及一种使用时序资源进行有效统计优化的策略。基于这项工作,我们提出了一种新颖的统计泄漏最小化方法,该方法使用TY松弛作为浇口变化量度。使用适合于统计设计的基于TY的度量标准,可以确保我们的方法在更高的速度下具有更好的优化性能。在ISCAS-85基准电路上的实验结果表明,与统计基准方法相比,最小化泄漏方法可将泄漏减少25.2%。另外,当门数很多时,我们的方法具有更好的运行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号