首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Symbolic Moment Computation for Statistical Analysis of Large Interconnect Networks
【24h】

Symbolic Moment Computation for Statistical Analysis of Large Interconnect Networks

机译:大型互连网络统计分析的符号矩计算

获取原文
获取原文并翻译 | 示例

摘要

The shrinking technology feature size and dense large-scale integration make process variation a challenging issue directly confronting the latest design automation tools. Process variation causes severe variation in interconnect networks, including very large-scale integrated interconnect structures, such as clock trees, clock mesh, power-ground networks, and other wiring structures in 3-D integrated circuits. The traditional moment computation techniques are only partly useful for analyzing such variational problems, however, their computational efficiency cannot meet the quickly rising needs, such as statistical analysis. This paper presents a novel symbolic moment calculator (SMC) for variational interconnect analysis. The moment calculator is constructed in a regular data structure that incorporates binary decision diagrams for data storage and computation. Given an interconnect circuit, such a computation diagram has to be constructed only once and can be repeatedly invoked for computation of moments with varying parameter values. Also, the SMC is friendly to interconnect synthesis in that it can be incrementally modified according to the modifications made to the circuit structure. Applications of the SMC for fast moment computation, sensitivity analysis, and statistical timing analysis are addressed. Significant efficiency is demonstrated comparing to other existing methods.
机译:不断缩小的技术功能尺寸和密集的大规模集成使流程变化成为直接面对最新设计自动化工具的挑战性问题。工艺变化会导致互连网络发生严重变化,互连网络包括超大规模集成互连结构,例如时钟树,时钟网格,电源接地网络以及3-D集成电路中的其他布线结构。传统的矩量计算技术仅对分析此类变分问题有用,但是它们的计算效率无法满足快速增长的需求,例如统计分析。本文提出了一种新颖的符号矩计算器(SMC),用于变体互连分析。矩计算器以常规数据结构构建,其中合并了用于数据存储和计算的二进制决策图。在给定互连电路的情况下,这种计算图仅需构建一次,并且可以重复调用以计算具有变化的参数值的力矩。而且,SMC可以方便地进行互连综合,因为它可以根据对电路结构的修改而逐步进行修改。解决了SMC在快速矩计算,灵敏度分析和统计时序分析中的应用。与其他现有方法相比,具有显着的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号