首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >A Clock Control Strategy for Peak Power and RMS Current Reduction Using Path Clustering
【24h】

A Clock Control Strategy for Peak Power and RMS Current Reduction Using Path Clustering

机译:使用路径聚类的峰值功率和RMS电流降低的时钟控制策略

获取原文
获取原文并翻译 | 示例

摘要

Peak power reduction has been a critical challenge in the design of integrated circuits impacting the chip's performance and reliability. The reduction of peak power also reduces the power density of integrated circuits. Due to large IR-voltage drops in circuits, transistor switching slows down giving rise to timing violations and logic failures. In this paper, we present a new clock control strategy for peak-power reduction in VLSI circuits. In the proposed method, the simultaneous switching of combinational paths is minimized by taking advantage of the delay slacks among the paths and clustering the paths with similar slack values. Once the paths are identified based on the path delays and their slack values, the clustering algorithm determines the ideal number of clusters for the given circuit and for each cluster the maximum possible phase shift that can be applied to the clock. The paths are assigned to clusters in a load balanced manner based on the slack values and each cluster will have a phase shift possible on its clock depending on the slack. Thus, the proposed register-transfer level (RTL) method takes advantage of the logic-path timing slack to re-schedule circuit activities at optimal intervals within the unaltered clock period. When switching activities are redistributed more evenly across the clock period, the IC supply-current consumption is also spread across a wider range of time within the clock period. This has the beneficial effect of reducing peak-current draw in addition to reducing RMS power draw without having to change the operating frequency and without utilizing additional power supply voltages as in dual or multi VT approaches. The proposed method is implemented and tested through simulations using an experimental setup with Synopsys Tools Suite and Cadence Tools on the ISCAS'85 benchmark circuits, OpenCore circuits and LEON processor multiplier circuit. Experimental results indicate that peak power can be reduced significantly to at- least 72% depending on the number of clusters and the phase-shifted clock identified as suitable for the given circuit by the proposed algorithms. Although the proposed method incurs some power overhead compared to the traditional clocking method, the overhead can be made negligible compared to the peak-power reduction as seen in the experimental results presented.
机译:降低峰值功率一直是影响芯片性能和可靠性的集成电路设计的关键挑战。峰值功率的降低也降低了集成电路的功率密度。由于电路中较大的IR压降,晶体管开关速度变慢,从而导致时序违规和逻辑故障。在本文中,我们提出了一种用于降低VLSI电路中峰值功率的新时钟控制策略。在所提出的方法中,通过利用路径之间的延迟松弛并将具有相似松弛值的路径聚类,来最小化组合路径的同时切换。一旦基于路径延迟及其松弛值确定了路径,聚类算法就可以确定给定电路的理想簇数,并且对于每个簇,可以确定可应用于时钟的最大可能相移。基于松弛值,将路径以负载平衡的方式分配给群集,并且取决于松弛,每个群集在其时钟上都可能有相移。因此,所提出的寄存器传输级(RTL)方法利用逻辑路径时序松弛来在未更改的时钟周期内以最佳间隔重新安排电路活动。当开关活动在整个时钟周期内更均匀地重新分配时,IC的电源电流消耗也将在时钟周期内的更宽的时间范围内分布。这具有减少峰值电流消耗的有益效果,除了减少RMS功率消耗外,无需更改工作频率,并且无需像双VT或多VT方法那样利用额外的电源电压。通过使用Synopsys工具套件和Cadence工具在ISCAS'85基准电路,OpenCore电路和LEON处理器乘法器电路上进行的实验设置,通过仿真来实现和测试所提出的方法。实验结果表明,峰值功率可以显着降低到至少72%,具体取决于群集的数量和所提出的算法确定的适用于给定电路的相移时钟。尽管与传统的时钟方法相比,所提出的方法会产生一些功率开销,但是与所提供的实验结果所示的峰值功率降低相比,开销可以忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号