首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Minitaur, an Event-Driven FPGA-Based Spiking Network Accelerator
【24h】

Minitaur, an Event-Driven FPGA-Based Spiking Network Accelerator

机译:Minitaur,基于事件驱动的基于FPGA的尖峰网络加速器

获取原文
获取原文并翻译 | 示例

摘要

Current neural networks are accumulating accolades for their performance on a variety of real-world computational tasks including recognition, classification, regression, and prediction, yet there are few scalable architectures that have emerged to address the challenges posed by their computation. This paper introduces Minitaur, an event-driven neural network accelerator, which is designed for low power and high performance. As an field-programmable gate array-based system, it can be integrated into existing robotics or it can offload computationally expensive neural network tasks from the CPU. The version presented here implements a spiking deep network which achieves 19 million postsynaptic currents per second on 1.5 W of power and supports up to 65 K neurons per board. The system records 92% accuracy on the MNIST handwritten digit classification and 71% accuracy on the 20 newsgroups classification data set. Due to its event-driven nature, it allows for trading off between accuracy and latency.
机译:当前的神经网络在各种现实世界中的计算任务(包括识别,分类,回归和预测)上的性能累积了赞誉,但为解决其计算带来的挑战,出现了可伸缩的体系结构。本文介绍了Minitaur,这是一种事件驱动的神经网络加速器,专为低功耗和高性能而设计。作为基于现场可编程门阵列的系统,它可以集成到现有的机器人技术中,也可以从CPU上卸下计算量大的神经网络任务。此处介绍的版本实现了一个尖峰深层网络,该网络在1.5 W的功率下每秒可实现1900万个突触后电流,并且每块板上最多支持65 K神经元。系统在MNIST手写数字分类上记录的准确度为92%,在20个新闻组分类数据集上的记录准确度为71%。由于其事件驱动的特性,它允许在准确性和延迟之间进行权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号