首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >MASTER: A Multicore Cache Energy-Saving Technique Using Dynamic Cache Reconfiguration
【24h】

MASTER: A Multicore Cache Energy-Saving Technique Using Dynamic Cache Reconfiguration

机译:MASTER:使用动态高速缓存重新配置的多核高速缓存节能技术

获取原文
获取原文并翻译 | 示例

摘要

With increasing number of on-chip cores and CMOS scaling, the size of last-level caches (LLCs) is on the rise and hence, managing their leakage energy consumption has become vital for continuing to scale performance. In multicore systems, the locality of memory access stream is significantly reduced because of multiplexing of access streams from different running programs and hence, leakage energy-saving techniques such as decay cache, which rely on memory access locality, do not save a large amount of energy. The techniques based on way level allocation provide very coarse granularity and the techniques based on offline profiling become infeasible to use for large number of cores. We present a multicore cache energy saving technique using dynamic cache reconfiguration (MASTER) that uses online profiling to predict energy consumption of running programs at multiple LLC sizes. Using these estimates, suitable cache quotas are allocated to different programs using cache coloring scheme and the unused LLC space is turned off to save energy. Even for four core systems, the implementation overhead of MASTER is only 0.8% of L2 size. We evaluate MASTER using out-of-order simulations with multiprogrammed workloads from SPEC2006 and compare it with conventional cache leakage energy-saving techniques. The results show that MASTER gives the highest saving in energy and does not harm performance or cause unfairness. For two- and four-core simulations, the average savings in memory subsystem (which includes LLC and main memory) energy over shared baseline LLC are 15% and 11%, respectively. Also, the average values of weighted speedup and fair speedup are close to one $(geq 0.98)$ .
机译:随着片上内核数量的增加和CMOS缩放,最后一级缓存(LLC)的大小在不断增加,因此,管理其泄漏能耗对于继续扩展性能至关重要。在多核系统中,由于来自不同运行程序的访问流的复用,显着降低了内存访问流的局部性,因此依赖于内存访问局部性的泄漏节能技术(例如衰减缓存)不会节省大量的内存。能源。基于方式级别分配的技术提供了非常粗糙的粒度,基于离线分析的技术对于大量内核变得不可行。我们提出了 m ulticore c a che energy s 使用动态缓存 r econfiguration(MASTER)保留 te 技术,该配置使用在线分析来预测能耗以多个LLC大小运行程序。使用这些估计,可以使用缓存着色方案将合适的缓存配额分配给不同的程序,并关闭未使用的LLC空间以节省能量。即使对于四个核心系统,MASTER的实施开销也仅为L2大小的0.8%。我们使用来自SPEC2006的多程序工作负载进行无序仿真来评估MASTER,并将其与传统的缓存泄漏节能技术进行比较。结果表明,MASTER可以最大程度地节省能源,并且不会损害性能或引起不公平。对于两核和四核仿真,与共享基准LLC相比,内存子系统(包括LLC和主内存)的能量平均节省分别为15%和11%。此外,加权加速和公平加速的平均值接近一个 $(geq 0.98)$

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号