首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Friendly Fast Poisson Solver Preconditioning Technique for Power Grid Analysis
【24h】

Friendly Fast Poisson Solver Preconditioning Technique for Power Grid Analysis

机译:用于电网分析的友好快速泊松解算器预处理技术

获取原文
获取原文并翻译 | 示例

摘要

Robust and efficient algorithms for power grid analysis are crucial for both VLSI design and optimization. Due to the increasing size of power grids, IR drop analysis has become more computationally challenging both in runtime and memory consumption. This paper presents a Fast Poisson Solver (FPS) preconditioned method for unstructured power grids with unideal boundary conditions. Unstructured power grids are transformed to structured grids, which can be modeled as Poisson blocks by analytic formulation. The analytic formulation of transformed structured grids is adopted as an analytic preconditioner for original unstructured grids, in which the analytic preconditioner can be considered as a sparse approximate inverse technique. By combining this analytic preconditioner with robust conjugate gradient method, we demonstrate that this approach is totally robust for extremely large scale power grid simulations. Theoretical proof and experimental results show that iterations of our proposed method will hardly increase with the increasing of grid size as long as the pads density and the distribution range of metal conductance value have been decided. We demonstrate that the run efficiency of our approach is much higher than classical incomplete Cholesky factorization preconditioned conjugate gradient solver and random walk-based hybrid solver.
机译:电网分析的鲁棒高效算法对于VLSI设计和优化都至关重要。由于电网尺寸的增加,IR降分析在运行时间和内存消耗方面都变得在计算上更具挑战性。本文提出了一种具有非理想边界条件的非结构化电网的快速泊松求解器(FPS)预处理方法。非结构化电网转换为结构化网格,可通过解析公式将其建模为泊松块。采用变换结构化网格的解析公式作为原始非结构化网格的解析预处理器,其中解析预处理器可以看作是一种稀疏的近似逆技术。通过将此分析式预处理器与鲁棒共轭梯度法相结合,我们证明了该方法对于超大规模电网仿真是完全鲁棒的。理论证明和实验结果表明,只要确定了焊盘的密度和金属电导值的分布范围,该方法的迭代就不会随着网格尺寸的增加而增加。我们证明了我们的方法的运行效率比经典的不完全Cholesky分解预处理共轭梯度求解器和基于随机游走的混合求解器要高得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号