首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Network-on-Chip-Enabled Multicore Platforms for Parallel Model Predictive Control
【24h】

Network-on-Chip-Enabled Multicore Platforms for Parallel Model Predictive Control

机译:用于并行模型预测控制的片上网络多核平台

获取原文
获取原文并翻译 | 示例

摘要

Internet-of-Things architecture aims to provide smart connectivity not only with existing computers, but also with new context-aware computing resources, extending soon beyond von Neumann devices for the purpose of mining, prediction, and control of cyber and physical components. These cyber-physical systems (CPSs) not only lead to the accumulation of large amounts of data that can be used to build comprehensive mathematical models, but also raise the quest for real-time analysis and control in diverse application domains, such as environment, healthcare, avionics, smart interconnected automobiles, and smart buildings. Endowing the CPS with a higher degree of distributed smartness and cognition (adaptation) to process massive amounts of data requires efficient control modules. In addition, the prohibitive nature of power consumption, data movement, and memory bandwidth issues calls for a shift of processing the decision-making strategies from within large supercomputing centers closer to the actual sensing site via many distributed networks-on-chip (NoCs)-based multicore platforms. Toward this end, in this paper, we propose an efficient NoC-based multicore architecture capable of solving large-scale nonlinear model predictive control (NMPC) problems. By carefully analyzing the spatiotemporal workload characteristics of the NMPC problems, we propose the design of an efficient NoC architecture. Our proposed NoC architecture achieves up to 29% improvement in latency and 28% improvement in energy dissipation over the conventional mesh NoC-based counterpart.
机译:物联网架构旨在不仅提供与现有计算机的智能连接,而且还提供与上下文相关的新计算资源的智能连接,其目的是为了挖掘,预测和控制网络和物理组件而很快超出冯·诺依曼设备。这些网络物理系统(CPS)不仅会导致积累大量可用于构建全面数学模型的数据,而且引发了对各种应用领域(例如环境,医疗保健,航空电子设备,智能互联汽车和智能建筑。使CPS具有更高程度的分布式智能和认知(适应)能力来处理大量数据,需要高效的控制模块。此外,功耗,数据移动和内存带宽问题的禁止性要求通过许多分布式片上网络(NoC)将处理决策策略的过程转移到更靠近实际传感站点的大型超级计算中心。基于多核的平台。为此,在本文中,我们提出了一种有效的基于NoC的多核体系结构,能够解决大规模非线性模型预测控制(NMPC)问题。通过仔细分析NMPC问题的时空工作负载特征,我们提出了一种有效的NoC体系结构的设计。与传统的基于NoC的网格相比,我们提出的NoC架构可将延迟提高29%,并将能耗降低28%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号