首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >A Noise-Power-Area Optimized Biosensing Front End for Wireless Body Sensor Nodes and Medical Implantable Devices
【24h】

A Noise-Power-Area Optimized Biosensing Front End for Wireless Body Sensor Nodes and Medical Implantable Devices

机译:用于无线人体传感器节点和医疗植入设备的噪声功率面积优化的生物传感前端

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a noise, power, and area efficient biosensing front-end application specified integrated circuit (ASIC) for the next-generation wireless body sensor nodes and implantable devices. We identify the key design parameter tradeoffs in the biomedical recording systems and carry out a thorough analysis and optimization to maximize them. Based on our analysis and optimization of the front end, we propose a design methodology for the recording channel that is applicable to various biomedical applications. The ASIC is implemented in a 0.18-μm CMOS process to validate our optimization methodology. The ASIC is reconfigurable to accommodate various biopotentials with the high-pass and low-pass cutoff frequencies being 0.5-300 Hz and 150 Hz-10 kHz, respectively. The lowpass cutoff is provided by an ultralow power Gm-C low-pass filter, which also acts as an antialiasing filter for the switching-optimized 10-b successive approximation register (SAR) analogto-digital converter (ADC). The analog front end (AFE) gain is also programmable from 38 to 72 dB. A comprehensive power management unit provides the power supply, multiple reference voltages, and bias currents to the entire chip. The AFE and ADC dissipate only 5.74 μW and 306 nW from the on-chip regulators, respectively. The measured input-referred noise is 2.98 μVrms, resulting in the noise efficiency factor and power efficiency factor equals 2.6 and 9.46, respectively. The active area of the AFE is 0.0228 mm. We verify the chip functionality in a number of in vivo and ex vivo biological experiments.
机译:在本文中,我们为下一代无线人体传感器节点和可植入设备展示了一种噪声,功率和面积高效的生物传感前端应用指定集成电路(ASIC)。我们确定生物医学记录系统中的关键设计参数折衷,并进行全面的分析和优化以使它们最大化。基于对前端的分析和优化,我们提出了一种适用于各种生物医学应用的记录通道设计方法。 ASIC采用0.18μmCMOS工艺实现,以验证我们的优化方法。 ASIC可重新配置以适应各种生物电势,高通和低通截止频率分别为0.5-300 Hz和150 Hz-10 kHz。低通截止由超低功耗Gm-C低通滤波器提供,该滤波器还用作开关优化的10-b逐次逼近寄存器(SAR)模数转换器(ADC)的抗混叠滤波器。模拟前端(AFE)增益也可以在38至72 dB之间进行编程。全面的电源管理单元为整个芯片提供电源,多个参考电压和偏置电流。 AFE和ADC的片上稳压器分别仅消耗5.74μW和306 nW的功耗。测得的输入等效噪声为2.98μVrms,因此噪声效率系数和功率效率系数分别等于2.6和9.46。 AFE的有效区域为0.0228毫米。我们在许多体内和离体生物学实验中验证了芯片功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号