首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Low-VDD Operation of SRAM Synaptic Array for Implementing Ternary Neural Network
【24h】

Low-VDD Operation of SRAM Synaptic Array for Implementing Ternary Neural Network

机译:实现三元神经网络的SRAM突触阵列的低VDD操作

获取原文
获取原文并翻译 | 示例

摘要

For Internet of Things (IoT) edge devices, it is very attractive to have the local sensemaking capability instead of sending all the data back to the cloud for information processing. For image pattern recognition, neuro-inspired machine learning algorithms have demonstrated enormous powerfulness. To effectively implement learning algorithms on-chip for IoT edge devices, on-chip synaptic memory architectures have been proposed to implement the key operations such as weighted-sum or matrix-vector multiplication. In this paper, we proposed a low-power design of static random access memory (SRAM) synaptic array for implementing a low-precision ternary neural network. We experimentally demonstrated that the supply voltage (VDD) of the SRAM array could be aggressively reduced to a level, where the SRAM cell is susceptible to bit failures. The testing results from 65-nm SRAM chips indicate that VDD could be reduced from the nominal 1-0.55 V (or 0.5 V) with a bit error rate ~0.23% (or ~1.56%), which only introduced ~0.08% (or ~1.68%) degradation in the classification accuracy. As a result, the power consumption could be reduced by more than 8× (or 10×).
机译:对于物联网(IoT)边缘设备,具有本地感知能力而不是将所有数据发送回云进行信息处理非常有吸引力。对于图像模式识别,受神经启发的机器学习算法已显示出强大的功能。为了在物联网边缘设备上有效地在芯片上实现学习算法,已经提出了片上突触存储器架构来实现关键操作,例如加权和或矩阵向量乘法。在本文中,我们提出了一种用于实现低精度三元神经网络的低功耗静态随机存取存储器(SRAM)突触阵列设计。我们通过实验证明,SRAM阵列的电源电压(VDD)可以大幅度降低到SRAM单元容易发生位故障的水平。 65纳米SRAM芯片的测试结果表明VDD可以从标称1-0.55 V(或0.5 V)降低,误码率约为0.23%(或〜1.56%),而误码率仅为〜0.08%(或〜1.68%)的分类精度下降。结果,功耗可以减少超过8倍(或10倍)。

著录项

  • 来源
  • 作者单位

    School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA;

    School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA;

    Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan;

    Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan;

    Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan;

    Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan;

    School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Training; Neurons; Arrays; SRAM cells; Image coding; Neural networks;

    机译:训练;神经元;阵列;SRAM单元;图像编码;神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号