首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Mapping Spiking Neural Networks to Neuromorphic Hardware
【24h】

Mapping Spiking Neural Networks to Neuromorphic Hardware

机译:将尖刺神经网络映射到神经形态硬件

获取原文
获取原文并翻译 | 示例

摘要

Neuromorphic hardware implements biological neurons and synapses to execute a spiking neural network (SNN)-based machine learning. We present SpiNeMap, a design methodology to map SNNs to crossbar-based neuromorphic hardware, minimizing spike latency and energy consumption. SpiNeMap operates in two steps: SpiNeCluster and SpiNePlacer. SpiNeCluster is a heuristic-based clustering technique to partition an SNN into clusters of synapses, where intracluster local synapses are mapped within crossbars of the hardware and intercluster global synapses are mapped to the shared interconnect. SpiNeCluster minimizes the number of spikes on global synapses, which reduces spike congestion and improves application performance. SpiNePlacer then finds the best placement of local and global synapses on the hardware using a metaheuristic-based approach to minimize energy consumption and spike latency. We evaluate SpiNeMap using synthetic and realistic SNNs on a state-of-the-art neuromorphic hardware. We show that SpiNeMap reduces average energy consumption by 45% and spike latency by 21%, compared to the best-performing SNN mapping technique.
机译:神经形态硬件实现生物神经元和突触以执行基于尖峰神经网络(SNN)的机器学习。我们介绍了SpiNeMap,这是一种将SNN映射到基于交叉开关的神经形态硬件的设计方法,可最大程度地减少尖峰延迟和能耗。 SpiNeMap分两步操作:SpiNeCluster和SpiNePlacer。 SpiNeCluster是一种基于启发式的聚类技术,用于将SNN划分为突触群集,其中群集内局部突触被映射到硬件的交叉开关中,而群集间全局突触被映射到共享的互连。 SpiNeCluster最大限度地减少了全局突触上的尖峰次数,从而减少了尖峰拥塞并提高了应用程序性能。然后,SpiNePlacer使用基于元启发式的方法在硬件上找到本地和全局突触的最佳放置,以最大程度地减少能耗和尖峰延迟。我们在最先进的神经形态硬件上使用合成的和现实的SNN评估SpiNeMap。我们证明,与性能最佳的SNN映射技术相比,SpiNeMap可将平均能耗降低45%,将尖峰延迟降低21%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号