首页> 外文期刊>Vehicle System Dynamics >Global vehicle control using differential braking torques and active suspension forces
【24h】

Global vehicle control using differential braking torques and active suspension forces

机译:利用差动制动扭矩和主动悬架力进行全局车辆控制

获取原文
获取原文并翻译 | 示例
       

摘要

This article treats the problem of global chassis control of a wheeled-vehicle in a turn. The aim of our research is to design a nonlinear control law that allows the vehicle to follow the desired trajectories in yaw rate and in longitudinal acceleration while stabilizing the behaviours of roll rate, pitch rate and vertical velocity using both braking torques and suspension forces. The research is realized under the collaboration of the Centre de Robotique of the Ecole des Mines de Paris with PSA-Peugeot-Citroeen. The global control problem is divided into two subproblems depending on the physical control actuators which are used. First, in the case of horizontal dynamics control, only the braking torques art used. Then, in the second case of vertical dynamics control, only the suspension forces are used. In this case, we show that the system loses its controllability property during the transition phase of the turn, if we consider explicitly the yaw acceleration equation to compute the suspension forces. An alternative solution is proposed, which can regulate the pitch rate, roll rate and vertical velocity, and can act on the yaw rate by adapting a constrained optimal control algorithm. Then the two control subproblems are merged into a global chassis control which achieves our aim. The above mentioned control laws are based on the technique of nonlinear constrained optimization and of singular perturbations theory using natural time scale decomposition in slow/fast subsystems. They have been tested and validated on a complete vehicle model of 14 degrees of freedom developed by PSA-Peugeot-Citroen.
机译:本文轮流讨论了轮式车辆的全局底盘控制问题。我们研究的目的是设计一种非线性控制律,使车辆能够在偏航率和纵向加速度方面遵循所需的轨迹,同时利用制动扭矩和悬架力来稳定侧倾率,俯仰率和垂直速度的行为。这项研究是在巴黎矿业大学机器人中心与PSA-Peugeot-Citroeen的合作下完成的。根据所使用的物理控制执行器,全局控制问题分为两个子问题。首先,在水平动态控制的情况下,仅使用制动扭矩。然后,在垂直动态控制的第二种情况下,仅使用悬架力。在这种情况下,如果我们明确考虑偏航加速度方程来计算悬架力,则表明系统在转弯过渡阶段会失去其可控制性。提出了一种替代方案,该方案可以调节俯仰率,侧倾率和垂直速度,并且可以通过采用约束最优控制算法来对横摆率起作用。然后,将这两个控制子问题合并为一个实现我们目标的全局底盘控制。上面提到的控制律是基于非线性约束优化技术和在慢速/快速子系统中使用自然时间尺度分解的奇异摄动理论的。它们已经在PSA-Peugeot-Citroen开发的完整的14自由度车辆模型上进行了测试和验证。

著录项

  • 来源
    《Vehicle System Dynamics》 |2005年第4期|p.261-284|共24页
  • 作者

    H. CHOU; B. DANDREA-NOVEL;

  • 作者单位

    Centre de Robotique, Ecole des Mines de Paris, 60 blvd Saint-Michel, 75272 Paris CEDEX 06, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 汽车工程;
  • 关键词

  • 入库时间 2022-08-17 23:46:20

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号