首页> 外文期刊>User modeling and user-adapted interaction >Automatic detection of users' skill levels using high-frequency user interface events
【24h】

Automatic detection of users' skill levels using high-frequency user interface events

机译:使用高频用户界面事件自动检测用户的技能水平

获取原文
获取原文并翻译 | 示例

摘要

Computer users have different levels of system skills. Moreover, each user has different levels of skill across different applications and even in different portions of the same application. Additionally, users' skill levels change dynamically as users gain more experience in a user interface. In order to adapt user interfaces to the different needs of user groups with different levels of skills, automatic methods of skill detection are required. In this paper, we present our experiments and methods, which are used to build automatic skill classifiers for desktop applications. Machine learning algorithms were used to build statistical predictive models of skill. Attribute values were extracted from high frequency user interface events, such as mouse motions and menu interactions, and were used as inputs to our models. We have built both task-independent and task-dependent classifiers with promising results.
机译:计算机用户具有不同级别的系统技能。而且,每个用户在不同的应用程序甚至同一应用程序的不同部分都具有不同的技能水平。另外,随着用户在用户界面中获得更多经验,用户的技能水平也会动态变化。为了使用户界面适应具有不同技能水平的用户组的不同需求,需要自动的技能检测方法。在本文中,我们介绍了我们的实验和方法,这些方法和方法用于为桌面应用程序构建自动技能分类器。机器学习算法被用来建立技能的统计预测模型。属性值是从高频用户界面事件(例如鼠标移动和菜单交互)中提取的,并用作我们模型的输入。我们已经建立了与任务无关的分类器和与任务相关的分类器,并都取得了令人鼓舞的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号