首页> 外文期刊>User modeling and user-adapted interaction >Movie genome: alleviating new item cold start in movie recommendation
【24h】

Movie genome: alleviating new item cold start in movie recommendation

机译:电影基因组:缓解电影推荐中的新项目冷门

获取原文

摘要

As of today, most movie recommendation services base their recommendations on collaborative filtering (CF) and/or content-based filtering (CBF) models that use metadata (e.g., genre or cast). In most video-on-demand and streaming services, however, new movies and TV series are continuously added. CF models are unable to make predictions in such a scenario, since the newly added videos lack interactionsa problem technically known as new item cold start (CS). Currently, the most common approach to this problem is to switch to a purely CBF method, usually by exploiting textual metadata. This approach is known to have lower accuracy than CF because it ignores useful collaborative information and relies on human-generated textual metadata, which are expensive to collect and often prone to errors. User-generated content, such as tags, can also be rare or absent in CS situations. In this paper, we introduce a new movie recommender system that addresses the new item problem in the movie domain by (i) integrating state-of-the-art audio and visual descriptors, which can be automatically extracted from video content and constitute what we call the movie genome; (ii) exploiting an effective data fusion method named canonical correlation analysis, which was successfully tested in our previous works Deldjoo et al. (in: International Conference on Electronic Commerce and Web Technologies. Springer, Berlin, pp 34-45, 2016b; Proceedings of the Twelfth ACM Conference on Recommender Systems. ACM, 2018b), to better exploit complementary information between different modalities; (iii) proposing a two-step hybrid approach which trains a CF model on warm items (items with interactions) and leverages the learned model on the movie genome to recommend cold items (items without interactions). Experimental validation is carried out using a system-centric study on a large-scale, real-world movie recommendation dataset both in an absolute cold start and in a cold to warm transition; and a user-centric online experiment measuring different subjective aspects, such as satisfaction and diversity. Results show the benefits of this approach compared to existing approaches.
机译:截至今天,大多数电影推荐服务的推荐都基于使用元数据(例如体裁或演员)的协作过滤(CF)和/或基于内容的过滤(CBF)模型。但是,在大多数视频点播和流媒体服务中,新电影和电视连续剧不断添加。 CF模型无法在这种情况下做出预测,因为新添加的视频缺乏交互性,在技术上称为新项目冷启动(CS)。当前,解决此问题的最常用方法是切换到纯CBF方法,通常是通过利用文本元数据进行。众所周知,此方法比CF的准确性低,因为它忽略了有用的协作信息,并依赖于人为生成的文本元数据,这些元数据收集起来很昂贵,而且容易出错。在CS情况下,用户生成的内容(例如标签)也可能很少或不存在。在本文中,我们介绍了一种新的电影推荐系统,该系统通过(i)集成可以从视频内容中自动提取的最新音频和视觉描述符来解决电影领域中的新项目问题,称为电影基因组; (ii)利用一种称为规范相关分析的有效数据融合方法,该方法已在我们先前的研究中成功测试过Deldjoo等。 (在:国际电子商务和Web技术会议。柏林,Springer,第34-45页,2016b;第十二届ACM推荐系统会议论文集。ACM,2018b),以更好地利用不同模式之间的互补信息; (iii)提出了一种两步混合方法,该方法针对温暖的物品(具有交互作用的项目)训练CF模型,并利用电影基因组上的学习模型来推荐寒冷的物品(没有交互作用的项目)。实验验证是通过以系统为中心的研究,在绝对的冷启动以及从冷到暖的过渡过程中,对大型真实电影推荐数据集进行的;以及以用户为中心的在线实验,该实验测量了不同的主观方面,例如满意度和多样性。结果表明,与现有方法相比,该方法的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号