首页> 外文期刊>URSI Radio Science Bulletin >Sub-voxel refinement method for tissue boundary conductivities in volume conductor models
【24h】

Sub-voxel refinement method for tissue boundary conductivities in volume conductor models

机译:体导体模型中组织边界电导率的亚体素细化方法

获取原文
获取原文并翻译 | 示例
       

摘要

The resolution and element type of the mesh used in the Finite-Element Method modeling of transcranial direct-current stimulation (tDCS) greatly affect both the accuracy of the solution and the computational time. Tetrahedral meshing is usually used in these models as it well approximates curvature, but the models are slow to solve. Using a voxel grid as the mesh significantly reduces the computational time, but the cubical elements are not the most suitable option for curved surfaces. Tissue boundaries can be modeled as a layer of voxels with an average conductivity of the surrounding tissues. However, as the boundary being modeled only rarely divides a voxel into two equally sized portions, this approach is often erroneous, and in particular, with low resolutions. In this paper, we propose a novel method for improving the accuracy of anatomically correct Finite-Element Method simulations by enhancing the tissue boundaries in voxel models. In our method, a voxel model is created from a set of polygonal surfaces segmented from magnetic-resonance imaging (MRI) data. This is done by first voxelizing with a fine resolution, and then increasing the voxel size to the target resolution, and calculating the ratio of fine voxels in and outside the surface within each coarse voxel. More-accurate proportions for the volume of a coarse voxel inside and outside the tissue boundary are thus achieved, and the tissue boundary's conductivity can be better approximated. To test the performance of this method, a series of simulations of motor cortical tDCS were performed using resolutions from 0.2 mm to 2 mm, scaled to zero, two, or four times finer resolution. Based on the results, the voxel size could be doubled with a cost of 3% in relative error by using our method. The model's degrees of freedom (DOF) could thus be decreased by 87%, and the simulation times could be decreased by 82%.
机译:经颅直流电刺激(tDCS)的有限元方法建模中使用的网格的分辨率和元素类型极大地影响了求解的准确性和计算时间。这些模型通常使用四面体网格划分,因为它很好地近似了曲率,但是模型求解较慢。使用体素网格作为网格可以显着减少计算时间,但是立方元素并不是弯曲曲面的最合适选择。可以将组织边界建模为具有周围组织平均电导率的体素层。但是,由于建模的边界很少将体素分为两个大小相等的部分,因此这种方法通常是错误的,尤其是在分辨率较低的情况下。在本文中,我们提出了一种新颖的方法,通过增强体素模型中的组织边界来提高解剖上正确的有限元方法仿真的准确性。在我们的方法中,根据从磁共振成像(MRI)数据中分割出的一组多边形表面创建体素模型。首先,以高分辨率进行体素化,然后将体素大小增加到目标分辨率,并计算每个粗体素中的表面内外的精细体素的比例。因此,获得了组织边界内外的粗体素的体积的更精确比例,并且可以更好地近似组织边界的电导率。为了测试此方法的性能,对运动皮质tDCS进行了一系列模拟,使用的分辨率为0.2毫米至2毫米,分辨率分别为精细度的零,两倍或四倍。根据结果​​,使用我们的方法可以将体素大小加倍,相对误差为3%。因此,模型的自由度(DOF)可以减少87%,仿真时间可以减少82%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号