首页> 外文期刊>The radio science bulletin >Sub-Voxel Refi nement Method forTissue Boundary Conductivities inVolume Conductor Models
【24h】

Sub-Voxel Refi nement Method forTissue Boundary Conductivities inVolume Conductor Models

机译:副体素Refi Next方法组织边界电导率卷导体模型

获取原文
获取原文并翻译 | 示例
           

摘要

The resolution and element type of the mesh used inthe Finite-Element Method modeling of transcranialdirect-current stimulation (tDCS) greatly aff ect both theaccuracy of the solution and the computational time.Tetrahedral meshing is usually used in these models as it wellapproximates curvature, but the models are slow to solve.Using a voxel grid as the mesh signifi cantly reduces thecomputational time, but the cubical elements are not the mostsuitable option for curved surfaces. Tissue boundaries can bemodeled as a layer of voxels with an average conductivityof the surrounding tissues. However, as the boundary beingmodeled only rarely divides a voxel into two equally sizedportions, this approach is often erroneous, and in particular,with low resolutions. In this paper, we propose a novelmethod for improving the accuracy of anatomically correctFinite-Element Method simulations by enhancing the tissueboundaries in voxel models. In our method, a voxel modelis created from a set of polygonal surfaces segmented frommagnetic-resonance imaging (MRI) data. This is done byfi rst voxelizing with a fi ne resolution, and then increasingthe voxel size to the target resolution, and calculating theratio of fi ne voxels in and outside the surface within eachcoarse voxel. More-accurate proportions for the volumeof a coarse voxel inside and outside the tissue boundaryare thus achieved, and the tissue boundary’s conductivitycan be better approximated. To test the performance of thismethod, a series of simulations of motor cortical tDCS wereperformed using resolutions from 0.2 mm to 2 mm, scaledto zero, two, or four times fi ner resolution. Based on theresults, the voxel size could be doubled with a cost of 3%in relative error by using our method. The model’s degreesof freedom (DOF) could thus be decreased by 87%, and thesimulation times could be decreased by 82%.
机译:用于网格的分辨率和元素类型经颅的有限元方法建模直流刺激(TDCS)大大融合了解决方案的准确性和计算时间。四面体啮合通常在这些模型中使用近似曲率,但模型才能解决速度。使用Voxel网格作为网格标志,可以通过扩大计算时间,但立方体元素不是最多的弯曲表面的合适选择。组织边界可以是以平均电导率为模拟的体素层周围组织。但是,正如边界的那样建模很少将体素分为两个平等的大小部分,这种方法通常是错误的,特别是,分辨率低。在本文中,我们提出了一部小说提高解剖学校正的准确性的方法通过增强组织的有限元方法模拟体素模型中的界限。在我们的方法中,体素模型由一组多边形表面进行分段创建磁共振成像(MRI)数据。这是由用文件分辨率,然后增加voxel大小到目标分辨率,并计算在每个表面内外的内部体素的比例粗体素。更准确的音量比例组织边界内外的粗体素因此实现了,以及组织边界的电导率可以更好地近似。测试这个问题方法,一系列电机皮质TDC模拟使用0.2 mm到2 mm的分辨率进行,缩放零,两次或四次分辨率。基于这一点结果,体素尺寸可能加倍,成本为3%通过使用我们的方法相对误差。模型的学位自由(DOF)因此可以减少87%,而且模拟时间可以减少82%。

著录项

  • 来源
    《The radio science bulletin》 |2017年第360期|13-18|共6页
  • 作者

    Marko Mikkonen; Ilkka Laakso;

  • 作者单位

    School of Electrical EngineeringAalto UniversityFinland;

    School of Electrical EngineeringAalto UniversityFinland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号