首页> 外文期刊>Tsinghua Science and Technology >PrivBV: Distance-aware encoding for distributed data with local differential privacy
【24h】

PrivBV: Distance-aware encoding for distributed data with local differential privacy

机译:Privbv:具有本地差分隐私的分布式数据的距离感知编码

获取原文
获取原文并翻译 | 示例

摘要

Recently, local differential privacy (LDP) has been used as the de facto standard for data sharing and analyzing with high-level privacy guarantees. Existing LDP-based mechanisms mainly focus on learning statistical information about the entire population from sensitive data. For the first time in the literature, we use LDP for distance estimation between distributed data to support more complicated data analysis. Specifically, we propose PrivBV-a locally differentially private bit vector mechanism with a distance-aware property in the anonymized space. We also present an optimization strategy for reducing privacy leakage in the high-dimensional space. The distance-aware property of PrivBV brings new insights into complicated data analysis in distributed environments. As study cases, we show the feasibility of applying PrivBV to privacy-preserving record linkage and non-interactive clustering. Theoretical analysis and experimental results demonstrate the effectiveness of the proposed scheme.
机译:最近,本地差异隐私(LDP)已被用作数据共享和分析具有高级别隐私保障的事实标准。基于LDP的现有机制主要关注从敏感数据的全部人口学习统计信息。在文献中首次,我们使用LDP进行分布式数据之间的距离估计,以支持更复杂的数据分析。具体而言,我们提出了具有匿名空间中的距离感知属性的Privbv-A局部差别私有位矢量机制。我们还提供了一种优化策略,可降低高维空间中的隐私泄漏。 PrivBV的距离感知属性为分布式环境中的复杂数据分析带来了新的洞察。作为研究案例,我们展示了将Privbv应用于隐私保留记录链接和非交互式聚类的可行性。理论分析和实验结果表明了拟议方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号