...
首页> 外文期刊>Tree Physiology >Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration
【24h】

Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration

机译:常绿橡树中的气体交换和叶片老化:叶片碳平衡和冠层呼吸的原因和后果

获取原文
获取原文并翻译 | 示例
           

摘要

Leaves of Mediterranean evergreens experience large variations in gas exchange rates over their life span due to aging and seasonally changing environmental conditions. Accounting for the changing respiratory physiology of leaves over time will help improve estimations of leaf and whole-plant carbon balances. Here we examined seasonal variations in light-saturated net CO2 assimilation (Amax), dark respiration (Rd) and the proportional change in Rd per 10 °C change in temperature (Q10 of Rd) in previous-year (PY) and current-year (CY) leaves of the broadleaved evergreen tree Quercus ilex L. Amax and Rd were lower in PY than in CY leaves. Differences in nitrogen between cohorts only partly explained such differences, and rates of Amax and Rd expressed per unit of leaf nitrogen were still significantly different between cohorts. The decline in Amax in PY leaves did not result in the depletion of total non-structural carbohydrates, whose concentration was in fact higher in PY than CY leaves. Leaf-level carbon balance modeled from gas exchange data was positive at all ages. Q10 of Rd did not differ significantly between leaf cohorts; however, failure to account for distinct Rd between cohorts misestimated canopy leaf respiration by 13% across dates when scaling up leaf measurements to the canopy. In conclusion, the decline in Amax in old leaves that are close to or exceed their mean life span does not limit the availability of carbohydrates, which are probably needed to sustain new growth, as well as Rd and nutrient resorption during senescence. Accounting for leaf age as a source of variation of Rd improves the estimation of foliar respiratory carbon release at the stand scale.
机译:由于衰老和季节性变化的环境条件,地中海常绿植物的叶子在其生命周期内会经历很大的气体交换率变化。解释叶片随时间变化的呼吸生理状况,将有助于改善对叶片和整个植物碳平衡的估计。在这里,我们研究了光饱和CO 2 同化(A max ),暗呼吸(R d )的季节性变化以及上一年(PY)和当年(CY)的温度每变化10°C(R d 的Q 10 ),R d )阔叶常绿乔木栎叶片。PY中的A max 和R d 低于CY叶片。群体之间氮的差异仅部分解释了这种差异,并且群体间每单位叶氮的A max 和R d 表达率仍显着不同。 PY叶片中A max 的下降并未导致总非结构性碳水化合物的消耗,事实上,其在PY中的浓度高于CY叶片。根据气体交换数据建模的叶片水平碳平衡在所有年龄段均为正值。 R d 的Q 10 在各叶群之间无显着差异;但是,在按比例增加对冠层的叶片测量时,未能考虑队列之间不同的R d 导致整个日期误将冠层叶片呼吸估计为13%。总之,接近或超过其平均寿命的老叶中A max 的下降并不限制碳水化合物的可用性,而碳水化合物可能是维持新的增长所必需的,而R < sub> d 和衰老过程中的养分吸收。将叶龄作为R d 变异的来源,可以提高林分尺度下叶片呼吸碳释放的估计。

著录项

  • 来源
    《Tree Physiology》 |2012年第4期|p.464-477|共14页
  • 作者单位

    Center of Functional and Evolutionary Ecology, CNRS 1919 Route de Mende, 34293, Montpellier Cedex 5, France;

    Department of Biology, University of New Mexico, MSC03 2020, Albuquerque, New Mexico 87131-0001, USA;

    Center of Functional and Evolutionary Ecology, CNRS 1919 Route de Mende, 34293, Montpellier Cedex 5, France;

    Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号