首页> 外文期刊>Transportation Research Part B: Methodological >Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks
【24h】

Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks

机译:基于理论的残差神经网络:分立选择模型和深神经网络的协同作用

获取原文
获取原文并翻译 | 示例

摘要

Researchers often treat data-driven and theory-driven models as two disparate or even conflicting methods in travel behavior analysis. However, the two methods are highly complementary because data-driven methods are more predictive but less interpretable and robust, while theory-driven methods are more interpretable and robust but less predictive. Using their complementary nature, this study designs a theory-based residual neural network (TB-ResNet) framework, which synergizes discrete choice models (DCMs) and deep neural networks (DNNs) based on their shared utility interpretation. The TB-ResNet framework is simple, as it uses a (delta, 1-delta) weighting to take advantage of DCMs? simplicity and DNNs? richness, and to prevent underfitting from the DCMs and overfitting from the DNNs. This framework is also flexible: three instances of TB-ResNets are designed based on multinomial logit model (MNL-ResNets), prospect theory (PT-ResNets), and hyperbolic discounting (HD-ResNets), which are tested on three data sets. Compared to pure DCMs, the TB-ResNets provide greater prediction accuracy and reveal a richer set of behavioral mechanisms owing to the utility function augmented by the DNN component in the TB-ResNets. Compared to pure DNNs, the TB-ResNets can modestly improve prediction and significantly improve interpretation and robustness, because the DCM component in the TB-ResNets stabilizes the utility functions and input gradients. Overall, this study demonstrates that it is both feasible and desirable to synergize DCMs and DNNs by combining their utility specifications under a TB-ResNet framework. Although some limitations remain, this TBResNet framework is an important first step to create mutual benefits between DCMs and DNNs for travel behavior modeling, with joint improvement in prediction, interpretation, and robustness. (C) 2021 Elsevier Ltd. All rights reserved.
机译:研究人员通常将数据驱动和理论驱动的模型视为旅行行为分析中的两个不同甚至突出的方法。然而,这两种方法是高度互补的,因为数据驱动方法更具预测,但不太可解释和稳健,而理论驱动的方法更具可解释和强大但更易于预测性。使用它们的互补性,本研究设计了一种基于理论的残余神经网络(TB-RESET)框架,其基于其共享实用性解释来协同分立选择模型(DCMS)和深神经网络(DNN)。 TB-Resnet Framework很简单,因为它使用了(Delta,1-Delta)加权来利用DCMS?简单和DNN?丰富,并防止DCMS从DCMS置于DNN上。该框架也是灵活的:基于多项式Lo​​git模型(MNL-Resnet),前景理论(PT-Resnet)和双曲折扣(HD-Resnet),设计了三种TB-Resnet的实例,并在三个数据集上进行测试。与纯DCM相比,TB-RESNET提供更高的预测精度,并揭示由于TB-RESNET中的DNN分量增强的实用程序函数而揭示了一种更丰富的行为机制。与纯DNN相比,TB-RESEN可以适度地改善预测并显着提高解释和鲁棒性,因为TB-RESNET中的DCM组件稳定了公用事业功能和输入梯度。总的来说,本研究表明,通过在TB-Resnet框架下组合其公用事业规范,可以通过组合其使用该实用规范来促使DCMS和DNN既可行。虽然仍然存在一些限制,但这种tbresnet框架是在DCMS和DNN之间创造用于旅行行为建模的DCM和DNN之间的互利的重要第一步,具有联合改善预测,解释和鲁棒性。 (c)2021 elestvier有限公司保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号