首页> 外文期刊>Transport in Porous Media >Simulation of Solute Transport Through Fractured Rock: A Higher-Order Accurate Finite-Element Finite-Volume Method Permitting Large Time Steps
【24h】

Simulation of Solute Transport Through Fractured Rock: A Higher-Order Accurate Finite-Element Finite-Volume Method Permitting Large Time Steps

机译:溶质在裂隙岩中的运移模拟:允许较大时间步长的高阶精确有限元有限体积方法

获取原文
获取原文并翻译 | 示例
           

摘要

Discrete-fracture and rock matrix (DFM) modelling necessitates a physically realistic discretisation of the large aspect ratio fractures and the dissected material domains. Using unstructured spatially adaptively refined finite-element meshes, we find that the fastest flow often occurs in the smallest elements. Flow velocity and element size vary over many orders of magnitude, disqualifying global Courant number (CFL)-dependent transport schemes because too many time steps would be necessary to investigate displacements of interest. Here, we present a higher-order accurate implicit pressure-(semi)-implicit transport scheme for the advection-diffusion equation that overcomes this CFL limitation for DFM models. Using operator splitting, we solve the pressure and the transport equations on finite-element, node-centred finite-volume meshes, respectively, using algebraic multigrid methods. We apply this approach to field data-based DFM models where the fracture flow velocity and mesh refinement is 2-4 orders of magnitude greater than that of the matrix. For a global CFL of≤10,000, this implies sub-CFL, second-order accurate behaviour in the matrix, and super-CFL, at least first-order accurate, transports in fast-flowing fractures. Their greater refinement, however, largely offsets this numerical dispersion, promoting a highly accurate overall solution. Numerical and fracture-related mechanical dispersions are compared in the realistic DFM models using second-order accurate runs as reference cases. With a CFL histogram, we establish target error criteria for CFL overstepping. This analysis indicates that for extreme fracture heterogeneity, only a few transport steps can be sufficient to analyse macro-dispersion. This makes our implicit method attractive for quick analysis of transport properties on multiple realisations of DFM models.
机译:离散裂缝和岩石矩阵(DFM)建模需要对长宽比大的裂缝和解剖的材料域进行物理上逼真的离散化。使用非结构化的空间自适应细化有限元网格,我们发现最快的流通常发生在最小的单元中。流速和元件大小变化了多个数量级,从而取消了依赖全球库仑数(CFL)的运输方案的资格,因为要调查感兴趣的位移需要太多的时间步长。在这里,我们提出了一种对流扩散方程的高阶精确隐式(半)隐式输运方案,该方案克服了DFM模型的CFL限制。通过算子拆分,我们使用代数多重网格方法分别求解有限元,以节点为中心的有限体积网格上的压力和输运方程。我们将这种方法应用于基于现场数据的DFM模型,在该模型中,裂缝流速和网格细化程度要比矩阵大2-4个数量级。对于全局CFL≤10,000,这意味着在快速流动的裂缝中,亚CFL(基质中的二阶准确行为)和超级CFL(至少一阶准确)的运移。但是,它们的更大改进大大抵消了这种数值上的离散,从而促进了高度精确的整体解决方案。在实际的DFM模型中,使用二阶精确行程作为参考案例,比较了数值和与断裂相关的机械色散。利用CFL直方图,我们为CFL越位建立了目标误差标准。该分析表明,对于极端裂缝的非均质性,仅几个传输步骤就足以分析宏观分散。这使得我们的隐式方法对于快速分析DFM模型的多个实现上的传输属性具有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号