首页> 外文期刊>Transactions of Tianjin University >Prediction of the Helix/Sheet Content of Proteins from Their Primary Sequences by Neural Network Method
【24h】

Prediction of the Helix/Sheet Content of Proteins from Their Primary Sequences by Neural Network Method

机译:神经网络方法从蛋白质的一级序列预测蛋白质的螺旋/ Sheet含量

获取原文
获取原文并翻译 | 示例

摘要

The amino acid composition and the biased auto-correlation function are considered as features, BP neural network algorithm is used to synthesize these features. The prediction accuracy of this method is verified by using the independent non-homologous protein database. It is shown that the average absolute errors for re-substitution test are 0.070 and 0.068 with the standard deviations 0.049 and 0.047 for the prediction of the content of α-helix and β-sheet respectively. For cross-validation test, the average absolute errors are 0.075 and 0.070 with the standard deviations 0.050 and 0.049 for the prediction of the content of α-helix and β-sheet respectively. Compared with the other methods currently available, the BP neural network method combined with the amino acid composition and the biased auto-correlation function features can effectively improve the prediction accuracy.
机译:氨基酸组成和有偏自相关函数被认为是特征,采用BP神经网络算法合成这些特征。通过使用独立的非同源蛋白质数据库验证了该方法的预测准确性。结果表明,重新取代试验的平均绝对误差为0.070和0.068,预测α-螺旋和β-折叠含量的标准偏差分别为0.049和0.047。对于交叉验证测试,平均绝对误差为0.075和0.070,标准差分别为0.050和0.049,用于预测α-螺旋和β-折叠的含量。与现有的其他方法相比,结合氨基酸组成和有偏自相关函数特征的BP神经网络方法可以有效地提高预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号