首页> 外文期刊>Transactions of the ASAE >MODELING SEDIMENT TRAPPING IN A VEGETATIVE FILTER ACCOUNTING FOR CONVERGING OVERLAND FLOW
【24h】

MODELING SEDIMENT TRAPPING IN A VEGETATIVE FILTER ACCOUNTING FOR CONVERGING OVERLAND FLOW

机译:在植被过滤器中模拟泥沙捕集以转化陆上径流

获取原文
获取原文并翻译 | 示例

摘要

Vegetative filters (VF) are used to remove sediment and other pollutants from overland flow. When modeling the hydrology of VF, it is often assumed that overland flow is planar, but our research indicates that it can be two-dimensional with converging and diverging pathways. Our hypothesis is that flow convergence will negatively influence the sediment trapping capability of VF. The objectives were to develop a two-dimensional modeling approach for estimating sediment trapping in VF and to investigate the impact of converging overland flow on sediment trapping by VF. In this study, the performance of a VF that has field-scale flow path lengths with uncontrolled flow direction was quantified using field experiments and hydrologic modeling. Simulations of water flow processes were performed using the physically based, distributed model MIKE SHE. A modeling approach that predicts sediment trapping and accounts for converging and diverging flow was developed based on the University of Kentucky sediment filtration model. The results revealed that as flow convergence increases, filter performance decreases, and the impacts are greater at higher flow rates and shorter filter lengths. Convergence that occurs in the contributing field (in-field) upstream of the buffer had a slightly greater impact than convergence that occurred in the filter (in-filter). An area-based convergence ratio was defined that relates the actual flow area in a VF to the theoretical flow area without flow convergence. When the convergence ratio was 0.70, in-filter convergence caused the sediment trapping efficiency to be reduced from 80% for the planar flow condition to 64% for the converging flow condition. When an equivalent convergence occurred in-field, the sediment trapping efficiency was reduced to 57%. Thus, not only is convergence important but the location where convergence occurs can also be important
机译:营养过滤器(VF)用于清除陆上水流中的沉积物和其他污染物。在对VF进行水文建模时,通常会假设陆上径流是平面的,但我们的研究表明,它可以是二维的,具有收敛和发散的路径。我们的假设是,水流汇聚将对VF的沉积物捕集能力产生负面影响。目的是开发一种二维建模方法来估算VF中的泥沙捕获,并研究汇聚的陆上水流对VF中的泥沙捕获的影响。在这项研究中,使用野外实验和水文模型对具有场尺度流径长度且流向不受控制的VF的性能进行了量化。使用基于物理的分布式模型MIKE SHE对水流过程进行了仿真。基于肯塔基大学的泥沙过滤模型,开发了一种预测泥沙捕获并解释汇流和汇流的建模方法。结果表明,随着流量收敛性的提高,过滤器性能下降,并且在较高的流速和较短的过滤器长度下影响更大。缓冲区上游的贡献场(场内)中发生的收敛比过滤器(in-filter)中发生的收敛稍大。定义了基于面积的收敛比率,该比率将VF中的实际流动面积与没有流动收敛的理论流动面积相关联。当收敛比为0.70时,过滤器内收敛使泥沙截留效率从平面流动条件下的80%降低到收敛流动条件下的64%。当在野外发生等效收敛时,沉积物的捕集效率降低到57%。因此,不仅收敛很重要,而且收敛发生的位置也很重要

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号