首页> 外文期刊>Transactions of the ASABE >Hydraulic Property and Flow Characteristics of Three Labyrinth Flow Paths of Drip Irrigation Emitters under Micro-Pressure
【24h】

Hydraulic Property and Flow Characteristics of Three Labyrinth Flow Paths of Drip Irrigation Emitters under Micro-Pressure

机译:微量滴灌灌溉工三个迷宫流路的水力特性和流动特性

获取原文
获取原文并翻译 | 示例
           

摘要

A bstract. Lowering the working pressure of emitters is a potential approach to reducing the cost and operational expenditure of drip irrigation systems. Because of the lack of micro-pressure emitter molds, assembly lines, and micro-pressure emitter design theory, it is rare to find special emitters for micro-pressure drip irrigation. Taking three kinds of currently familiar labyrinth flow path emitters as the research object, a computational fluid dynamics (CFD) model for simulating the internal fluid flow within a micro-pressure labyrinth flow path was used to explore the integration of digital particle-tracking velocimetry and plane laser inducement fluorescence velocimetry for measuring the internal flow field of the labyrinth flow paths of emitters. The relative difference between the CFD-simulated discharge and the practically measured free discharge was less than 10.0%. Compared with the DPIV-measured results, the error was relatively small in terms of velocity distribution and magnitude of high and low velocity regions. The proposed physical model for internal fluid flow and its solution method could relatively accurately simulate the internal fluid flow characteristics and predict hydraulic property parameters under micro-pressure (10 to 50 kPa). The flow within three kinds of flow paths under micro-pressure was turbulent. It is possible to select a suitable flow path pattern to realize a full-turbulence design for special emitters under micro-pressure.
机译:一个抽象的。降低喷头的工作压力是降低滴灌系统成本和运营支出的一种潜在方法。由于缺乏微压发射器模具,装配线和微压发射器设计理论,因此很少有用于微压滴灌的特殊喷射器。以目前熟悉的三种迷宫式流路发射器为研究对象,采用模拟微压迷宫式流路内部流体流动的计算流体动力学(CFD)模型,探索了数字粒子跟踪测速技术和平面激光诱导荧光测速仪,用于测量发射器迷宫式流路的内部流场。 CFD模拟放电与实际测量的自由放电之间的相对差小于10.0%。与DPIV测量的结果相比,在速度分布和高,低速区域的大小方面,误差相对较小。所提出的内部流体流动物理模型及其求解方法可以相对准确地模拟内部流体流动特性并预测微压(10至50 kPa)下的水力特性参数。微压下三种流路内的流动是湍流的。可以选择合适的流路模式,以在微压下实现特殊喷射器的全湍流设计。

著录项

  • 来源
    《Transactions of the ASABE》 |2009年第4期|p.1129-1138|共10页
  • 作者单位

    Yunkai Li, Associate Professor, Center for Agricultural Water Research in China, Peiling Yang, Professor, Center for Agricultural Water Research in China, and Tingwu Xu, Professor, International College at Beijing, China Agricultural University, Beijing, China;

    Honglu Liu, Professor, Beijing Hydraulic Research Institute, Beijing, China;

    Haisheng Liu, Graduate Student, and Feipeng Xu, Associate Professor, Center for Agricultural Water Research in China, China Agricultural University, Beijing, China. Corresponding author: Peiling Yang, Center for Agricultural Water Research in China, China Agricultural University, P.O. 57, Qinghua Donglu, Haidian District, Beijing 100083, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computational fluid dynamics; Emitter; Labyrinth path; Micro-pressure; Particle-tracking Velocimetry;

    机译:计算流体动力学;发射极;迷宫路径;微压;粒子跟踪测速;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号