首页> 外文期刊>Transactions of the ASABE >Identification of Hopper Gate Sprocket During Grain Car Unloading Using Digital Image Processing
【24h】

Identification of Hopper Gate Sprocket During Grain Car Unloading Using Digital Image Processing

机译:基于数字图像处理的粮车卸载过程中料斗门链轮的识别

获取原文
获取原文并翻译 | 示例

摘要

For most applications, machine vision solutions based on pattern recognition are developed using images acquired in a laboratory setting. Major constraints with these solutions occur when implementing them in real-world applications. For instance, constantly changing ambient light conditions can pose many challenges to pattern recognition. The long-term objective of this study is to automate the unloading of railroad grain cars in grain elevators. The first step for this automation is to correctly identify the hopper gate sprocket on the grain car. Algorithms were developed to detect and identify the sprocket under proper lighting conditions with 100% accuracy. The performance of the algorithms was also evaluated for the identification of the sprocket on a grain car exposed to different lighting conditions, which is expected to occur in typical grain unloading facilities. Monochrome images of the sprocket from a model system were acquired using different light sources, such as incandescent (direct or diffuse), fluorescent, and LEDs, with potential variables such as human presence behind the sprocket, stray light, or different backgrounds. To identify the sprocket, correlation and pattern recognition techniques using a template image combined with shape detection were used. The images were preprocessed using image-processing techniques, including noise filtering and edge detection, prior to template matching. The template image developed from the light source that was similar to the light source used to acquire images simulating the work environment was more successful in identifying the sprocket. The template image used in the correlation technique easily identified the sprocket in the images from all light sources when none of the variables mentioned above were introduced. A combination of correlation with shape detection performed better than correlation alone in identifying the sprocket in images with external variables present
机译:对于大多数应用,使用在实验室环境中获取的图像来开发基于模式识别的机器视觉解决方案。在实际应用中实施这些解决方案时,会遇到主要限制。例如,不断变化的环境光条件可能会给模式识别带来很多挑战。这项研究的长期目标是使谷物升降机中的铁路谷物车的卸载自动化。该自动化的第一步是正确识别谷物车上的料斗门链轮。开发了算法,可以在适当的照明条件下以100%的精度检测和识别链轮。还评估了算法的性能,以识别暴露在不同光照条件下的谷物车上的链轮,这种情况预计会发生在典型的谷物卸载设备中。使用不同的光源(例如白炽灯(直接或漫射),荧光灯和LED)从模型系统中获取链轮的单色图像,并带有潜在变量,例如人在链轮后方的存在,杂散光或不同的背景。为了识别链轮,使用了将模板图像与形状检测相结合的相关性和模式识别技术。在模板匹配之前,使用图像处理技术对图像进行预处理,包括噪声过滤和边缘检测。从光源开发的模板图像类似于用于获取模拟工作环境的图像的光源,在识别链轮方面更为成功。当没有引入上述变量时,在相关技术中使用的模板图像很容易从所有光源中识别出链轮。相关性与形状检测的结合在识别存在外部变量的图像中的链轮上比单独进行相关性要好

著录项

  • 来源
    《Transactions of the ASABE》 |2010年第4期|p.1313-1320|共8页
  • 作者单位

    Aravind L. Mohan, Graduate Student, Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada;

    Chithra Karunakaran, ASABE Member, Staff Scientist, Canadian Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada;

    Digvir S. Jayas, ASABE Fellow, Distinguished Professor, Vice-President (Research), University of Manitoba, Winnipeg, Manitoba, Canada;

    and Noel D. G. White, Senior Research Scientist, Agriculture and Agri-Food Canada, Cereal Research Centre, Winnipeg, Manitoba, Canada. Corresponding author: Digvir S. Jayas, University of Manitoba, 207 Administration Building, Winnipeg, MB, Canada R3T 2N2;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Automated grain unloading; Automation; Correlation; Light sources; Shape detection; Sprocket identification; Template matching;

    机译:自动谷物卸料;自动化;相关性光源;形状检测;链轮识别;模板匹配;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号