...
首页> 外文期刊>日本機械学会論文集 >タッピングモード原子間力顕微鏡への応用に向けたカンチレバーの衝突振動と制御
【24h】

タッピングモード原子間力顕微鏡への応用に向けたカンチレバーの衝突振動と制御

机译:敲击模式原子力显微镜应用的碰撞振动和悬臂控制

获取原文
获取原文并翻译 | 示例

摘要

原子間力顕微鏡(Atomic Force Microscopc: AFM)とrnは先端に探針が付いたマイクロカンチレバーを用いてrn微小な物体の表面形状を原子スケールの分解能で観測rnする顕微鏡であり,1986年にBinnigらにより発明さrnれ,それ以来多くの研究者によって性能向上が図らrnれてきた.%Toward the application to the tapping mode AFM (Atomic Force Microscope), we propose a new control method to keep the state of a soft impact between an object surface and the tip of a cantilever whose supporting point is periodically and laterally excited. In the practical usage of AFM, the surface of the object is scanned by the excited cantilever. Depending on the profile of the surface, the distance between the surface and the center of the excitation is varied and then, the state of the contact is changed. To keep the state of contact, the center of the excitation is automatically shifted in AFM. As a result, we can know the profile of the object from the shift of the center while scanning. By the way, it is known that various bifurcations of the responses of the beam occur according to impact conditions and variation of the excitation frequency. In our previous study, we indicated theoretically and experimentally that when the excitation frequency N is set to 2.5 times the first natural frequency ω_1 of the cantilever, i.e., N =2.5ω_1, the contact produces the frequency component of the 1.25 time the first natural frequency in the cantilever response, i.e., 1.25ω_1. In this paper, by using this phenomenon, we propose a control method to shift the center of the excitation according to the profile of the object surface, keeping soft contact. For this purpose, a real-time signal processing method is suggested to determine the magnitude of the targetted frequency component. Also, a servo system is designed to periodically excite and to control the center of the excitation precisely. Finally, validity of the proposed control method is experimentally confirmed by using a macro-beam.
机译:Atomic Force Microscopc(AFM)和rn显微镜是使用带有探针的微悬臂以原子级分辨率观察小物体的表面形状的。1986年,Binnig它是研究人员发明的,从那时起,许多研究人员都试图提高性能。 %对于应用到攻丝模式AFM(原子力显微镜)的情况,我们提出了一种新的控制方法,以保持物体表面和支撑点被周期性地横向激发的悬臂尖端之间的软冲击状态。在原子力显微镜的实际使用中,被激发的悬臂扫描物体的表面,根据表面的轮廓,改变表面和激发中心之间的距离,然后改变接触状态。保持接触状态,激发的中心在AFM中自动移动,结果,我们可以在扫描时从中心的移动中获知物体的轮廓。梁的响应是根据冲击条件和激发频率的变化而发生的。在我们先前的研究中,我们在理论和实验上都指出,当激发频率N设置为激发频率N的2.5倍时,悬臂的固有频率ω_1,即N =2.5ω_1,接触产生的频率分量是悬臂响应中第一个固有频率1.25ω_1的1.25倍。为此,建议采用一种实时信号处理方法来确定目标频率分量的大小,此外,还需要一种伺服系统来根据目标表面的轮廓移动激发中心,并保持软接触。最终设计了周期性的激励并精确地控制了激励中心,最后,通过使用大光束实验证明了所提出的控制方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号