...
首页> 外文期刊>Transactions of the American nuclear society >Atomistic Simulations of Point Defect Behavior in Nuclear Fuels
【24h】

Atomistic Simulations of Point Defect Behavior in Nuclear Fuels

机译:核燃料中点缺陷行为的原子模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Nuclear fuel performance modeling relies on accurate representation of material properties as function of fuel chemistry and micro-structure, and changes to these properties induced by, for example, irradiation, temperature variations and chemical evolution during reactor operation. We have used atomistic simulations based on density functional theory (DFT) and semi-empirical force-field representations of inter-atomic interactions to study the behavior of point defects in pristine and irradiated nuclear fuels. The results feed meso-scale models of point defect and microstructure evolution, which provide input to models of fission gas retention/release, swelling and thermal conductivity. The meso-scale models use the MARMOT phase-field code and, at the engineering scale, reduced order models of material properties are implemented in the BISON fuel performance code , which are both based on the MOOSE framework developed at Idaho National Laboratory (1NL). In this summary, we provide brief overviews of three examples of atomistic modeling of point defects in nuclear fuels to support meso- and engineering scale simulations of nuclear fuel performance. First, fission gas diffusion and its relation to gas release in irradiated UO_2 is discussed in the context of vacancies and vacancy clusters interacting with fission gas atoms and giving rise to diffusion. Second, we explore the defect chemistry of UO_2 doped with cations such as chromium, which are added by fuel vendors to improve performance, and we provide an explanation supported by modeling results for the increased grain size observed in chromium-doped UO_2. The mechanism responsible for large grains in chromium doped UO_2 is also investigated for other doping elements . Third, the work on point defects and fission gas diffusion in UO_2 is extended to the U_3Si_2 accident tolerant fuel candidate. All of the studies are performed under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.
机译:核燃料性能建模依赖于材料特性作为燃料化学和微结构的函数的准确表示,以及这些特性在反应堆运行过程中的变化,这些变化是由例如辐射,温度变化和化学演化引起的。我们已经使用基于密度泛函理论(DFT)的原子模拟和原子间相互作用的半经验力场表示法来研究原始燃料和辐照核燃料中点缺陷的行为。结果为点缺陷和微观结构演化的中尺度模型提供了信息,为裂变气体保留/释放,溶胀和热导率模型提供了输入。中尺度模型使用MARMOT相场代码,在工程规模上,BISON燃料性能代码实现了材料特性的降阶模型,这两个模型均基于爱达荷州国家实验室(1NL)开发的MOOSE框架。 。在此摘要中,我们简要概述了核燃料中点缺陷的原子建模的三个示例,以支持核燃料性能的中尺度和工程规模模拟。首先,在空位和空位簇与裂变气体原子相互作用并引起扩散的背景下,讨论了裂变气体的扩散及其与辐照UO_2中气体释放的关系。其次,我们研究了掺杂了铬等阳离子的UO_2的缺陷化学,燃料供应商添加了这些元素以改善性能,并通过建模结果对掺杂铬的UO_2中观察到的晶粒尺寸增加提供了解释。还研究了掺杂铬的UO_2中导致大晶粒的机理。第三,将UO_2中点缺陷和裂变气体扩散的工作扩展到U_3Si_2耐事故燃料候选对象。所有研究都是在核能高级建模与仿真(NEAMS)计划下进行的。

著录项

  • 来源
    《Transactions of the American nuclear society》 |2018年第6期|1328-1331|共4页
  • 作者单位

    Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA;

    Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA;

    Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA;

    Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA;

    Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA;

    Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号