...
首页> 外文期刊>Topics in cognitive science >Connecting Biological Detail With Neural Computation: Application to the Cerebellar Granule–Golgi Microcircuit
【24h】

Connecting Biological Detail With Neural Computation: Application to the Cerebellar Granule–Golgi Microcircuit

机译:用神经计算连接生物细节:在小脑颗粒 - 高尔基微电路的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Neurophysiology and neuroanatomy constrain the set of possible computations that can be performed in a brain circuit. While detailed data on brain microcircuits is sometimes available, cognitive modelers are seldom in a position to take these constraints into account. One reason for this is the intrinsic complexity of accounting for biological mechanisms when describing cognitive function. In this paper, we present multiple extensions to the neural engineering framework (NEF), which simplify the integration of low-level constraints such as Dale's principle and spatially constrained connectivity into high-level, functional models. We focus on a model of eyeblink conditioning in the cerebellum, and, in particular, on systematically constructing temporal representations in the recurrent granule-Golgi microcircuit. We analyze how biological constraints impact these representations and demonstrate that our overall model is capable of reproducing key properties of eyeblink conditioning. Furthermore, since our techniques facilitate variation of neurophysiological parameters, we gain insights into why certain neurophysiological parameters may be as observed in nature. While eyeblink conditioning is a somewhat primitive form of learning, we argue that the same methods apply for more cognitive models as well. We implemented our extensions to the NEF in an open-source software library named "NengoBio" and hope that this work inspires similar attempts to bridge low-level biological detail and high-level function.
机译:神经生理学和神经肿瘤约束可以在脑电路中执行的一组可能的计算。虽然有时可用的脑微电路的详细数据有时可用,但是认知建模者很少能够考虑这些限制。其中一个原因是在描述认知功能时核算生物机制的内在复杂性。在本文中,我们向神经工程框架(NEF)提供了多种扩展,这简化了低级约束的集成,例如Dale的原理和空间约束连接到高级功能模型。我们专注于小脑中的眼罩调节模型,特别是系统地构建复发颗粒 - 高压微电路中的时间表示。我们分析生物限制如何影响这些陈述,并证明我们的整体模型能够再现眨眼调节的关键特性。此外,由于我们的技术促进了神经生理参数的变化,因此我们对为什么某些神经生理学参数可以如本质上观察到的原因。虽然眨眼条件是一种稍微原始的学习形式,但我们认为相同的方法也适用于更多认知模型。我们在名为“nungobio”的开源软件库中的NEF中实施了我们的扩展,并希望这项工作激发了类似的尝试来弥合低级生物细节和高级功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号