...
首页> 外文期刊>Thin-Walled Structures >Direct strength method for web crippling-Lipped channels under EOF and IOF loading
【24h】

Direct strength method for web crippling-Lipped channels under EOF and IOF loading

机译:EOF和IOF载荷下腹板瘫痪通道的直接强度法

获取原文
获取原文并翻译 | 示例

摘要

To apply the Direct Strength Method (DSM) to web crippling of lipped channel sections, experiments were recently conducted under EOF and IOF loading conditions. In the research presented here, finite element models were first developed to predict the elastic buckling loads and the elasto-plastic behaviour, both of the experiments and an extended data set. New first- and second-order elasto-plastic theoretical models describing the plastic mechanism initiation of a 2D cross-sectional strip of the lipped channel sections were then developed. Subsequently these 2D cross-sectional models were transformed to full 3D models by using modelled yield line patterns as observed in the finite element simulations. Both the first- and second-order 3D models correlate well with the full section simulations. DSM equations were calibrated based on the results from the simulations, using several alternatives for the yield load as needed in the DSM: a first yield load from the finite element simulations; a rigid-plastic mechanism initiation load as used by other researchers; and a first-order elasto-plastic mechanism initiation load via the above theoretical models. Finally, these calibrated DSM equations were compared with the theoretical models, design codes, and a basic Merchant-Rankine approach. For the DSM, the first order rigid plastic yield load, most appropriate for the DSM and used by other researchers also, performs best for IOF load cases. For EOF load cases, however, using the first-order elasto-plastic load in the DSM gives best results. Taking these different yield loads for the different cases then, the DSM outperforms Eurocode, AISI S100, and the basic Merchant Rankine predictions. The DSM is intuitively and relatively easy to use, and this paper shows that widening its scope to web crippling of lipped channel sections is possible. Importantly, this paper steps into the discussion for a certain type of yield load to be used in the DSM for web crippling, and gives several arguments to consider the rigid-plastic mechanism initiation load.
机译:为了将直接强度法(DSM)应用于唇形通道截面的腹板瘫痪,最近在EOF和IOF加载条件下进行了实验。在这里提出的研究中,首先开发了有限元模型来预测弹性屈曲载荷和弹塑性行为,包括实验和扩展的数据集。然后,开发了新的一阶和二阶弹塑性理论模型,该模型描述了唇形通道截面的2D横截面条的塑性机理。随后,通过使用有限元模拟中观察到的建模屈服线模式,将这些2D横截面模型转换为完整3D模型。一阶和二阶3D模型都与整个截面模拟紧密相关。 DSM方程基于模拟结果进行了校准,并根据DSM的需要使用了几种屈服载荷替代方案:有限元模拟中的第一屈服载荷;其他研究人员使用的刚塑性机制启动载荷;通过上述理论模型得到一阶弹塑性机理的初始载荷。最后,将这些校准的DSM方程与理论模型,设计规范和基本的Merchant-Rankine方法进行了比较。对于DSM,最适合DSM并被其他研究人员使用的一阶刚性塑料屈服载荷在IOF载荷情况下表现最佳。但是,对于EOF载荷情况,在DSM中使用一阶弹塑性载荷可获得最佳结果。然后,针对不同情况采用这些不同的收益负载,DSM的表现优于Eurocode,AISI S100和基本的商户Rankine预测。 DSM直观且相对易于使用,并且本文表明将DSM的范围扩大到唇形通道截面的网状弯曲是可能的。重要的是,本文进入了对某种形式的屈服载荷的讨论,该屈服载荷将在DSM中用于卷筒纸的断裂,并给出了几个考虑刚性-塑性机构初始载荷的论据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号