首页> 外文期刊>Thin-Walled Structures >Nanostructure-based finite element analyses of aluminium profiles subjected to quasi-static axial crushing
【24h】

Nanostructure-based finite element analyses of aluminium profiles subjected to quasi-static axial crushing

机译:准静态轴向挤压铝型材的基于纳米结构的有限元分析

获取原文
获取原文并翻译 | 示例

摘要

In this study, a nanostructure model is used to predict the stress-strain curves of the aluminium alloys AA6063, AA6061 and AA6110 in T6, 17 and O tempers based on the chemical composition and the thermo-mechanical history. The predicted stress-strain curves are then employed in finite element analyses of rectangular hollow section (RHS) profiles of the same materials subjected to axial quasi-static crushing. Thus, the simulations are performed without any calibration of the plasticity model based on material tests. In addition, simulations with the material model calibrated from tensile tests on the same materials are performed for comparison. An experimental programme of the RHS profiles is conducted for validation purposes and compared to the numerical results in terms of the force-displacement curves and the peak and mean forces. To put emphasis on the performance of the nanostructure model, a refined solid element model is used to capture accurately the deformed geometry during axial crushing. A separate study is conducted to investigate the effect of friction on the simulated behaviour of the profiles. The numerical and experimental force-displacement curves display good agreement with deviations in the mean absolute percentage error (MAPE) of the peak and mean force less than 10% and 8%, respectively. By visual inspection of the deformed profiles, excellent agreement is found between the numerical simulations and the experimental tests. The results suggest that the nanostructure model can be used with confidence in design of energy absorbing structural components made of 6xxx aluminium alloys.
机译:在这项研究中,基于化学成分和热机械历史,使用纳米结构模型来预测铝合金T6、17和O态下AA6063,AA6061和A6110铝合金的应力-应变曲线。然后将预测的应力-应变曲线用于经过轴向准静态挤压的相同材料的矩形空心截面(RHS)轮廓的有限元分析。因此,执行模拟时无需基于材料测试对可塑性模型进行任何校准。此外,还进行了模拟,该模拟使用通过对相同材料进行的拉伸测试校准的材料模型进行比较。出于验证目的,进行了RHS轮廓的实验程序,并根据力-位移曲线以及峰值和平均力与数值结果进行了比较。为了强调纳米结构模型的性能,使用了改进的固体元素模型来精确捕获轴向挤压过程中的变形几何形状。进行了一项单独的研究,以研究摩擦对轮廓模拟行为的影响。数值和实验力-位移曲线显示出与峰的平均绝对百分比误差(MAPE)的偏差和平均力分别小于10%和8%的良好一致性。通过目视检查变形轮廓,可以在数值模拟和实验测试之间找到很好的一致性。结果表明,纳米结构模型可用于设计由6xxx铝合金制成的能量吸收结构部件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号