...
首页> 外文期刊>Thin Solid Films >Role of free-radical chain reactions and silylene chemistry in using methyl-substituted silane molecules in hot-wire chemical vapor deposition
【24h】

Role of free-radical chain reactions and silylene chemistry in using methyl-substituted silane molecules in hot-wire chemical vapor deposition

机译:自由基链反应和甲硅烷基化学在热线化学气相沉积中使用甲基取代的硅烷分子中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The reaction chemistry of four methyl-substituted silane molecules, including monomethylsilane (MMS), dimethylsilane (DMS), trimethylsilane (TriMS), and tetramethylsilane (TMS), has been studied in the hot-wire ( catalytic) chemical vapor deposition (HWCVD) process, both on heated tungsten or tantalum filaments and in the gas phase. The four molecules dissociate catalytically on hot W or Ta surfaces to form center dot CH3, center dot H and H-2. In a HWCVD reactor setup where the pressure is relatively high at 8-533 Pa, two reaction mechanisms involving silylene and free radical intermediate, respectively, operate with the four precursor gases. For MMS, its reaction chemistry is characterized by the exclusive involvement of methylsilylene intermediate. Reaction products when using DMS as a precursor gas come from silylene chemistry and free-radical chain reactions. Filament temperature and pressure affect strongly the competition between the two mechanisms. Specifically, silylene chemistry dominates at low temperatures of 1200-1300 degrees C and a low pressure of 16 Pa, and free-radical chain reactions take over at high temperatures and pressures. With the increasing methylsubstitutions in TriMS and TMS, free-radical chain reactions become predominant. A clear transition in the operating reaction mechanism from silylene chemistry to free-radical chain reactions has been shown when the number of Si-CH3 bonds increases in the methyl substituted silane molecules. (C) 2016 Published by Elsevier B.V.
机译:在热线(催化)化学气相沉积(HWCVD)中研究了四个甲基取代的硅烷分子的反应化学,包括单甲基硅烷(MMS),二甲基硅烷(DMS),三甲基硅烷(TriMS)和四甲基硅烷(TMS)。在加热的钨丝或钽丝上以及在气相中进行该过程。这四个分子在热的W或Ta表面上催化解离,形成中心点CH3,中心点H和H-2。在压力较高的HWCVD反应器装置中,压力为8-533 Pa,两种反应机理分别涉及亚甲硅烷基和自由基中间体,并与四种前体气体一起运行。对于MMS,其反应化学的特征在于甲基甲硅烷基中间体的唯一参与。使用DMS作为前体气体时,反应产物来自甲硅烷基化学反应和自由基链反应。细丝的温度和压力强烈影响这两种机理之间的竞争。具体而言,在1200-1300摄氏度的低温和16 Pa的低压下,亚甲硅化学占主导地位,自由基链反应在高温和高压下接管。随着TriMS和TMS中甲基取代的增加,自由基链反应占主导地位。当甲基取代的硅烷分子中Si-CH3键的数量增加时,已显示出操作反应机理从甲硅烷基化学到自由基链反应的明显转变。 (C)2016由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号