首页> 外文期刊>Theory and Practice of Logic Programming >Characterizations of stable model semantics for logic programs with arbitrary constraint atoms
【24h】

Characterizations of stable model semantics for logic programs with arbitrary constraint atoms

机译:具有任意约束原子的逻辑程序的稳定模型语义表征

获取原文
获取原文并翻译 | 示例

摘要

This paper studies the stable model semantics of logic programs with (abstract) constraint atoms and their properties. We introduce a succinct abstract representation of these constraint atoms in which a constraint atom is represented compactly. We show two applications. First, under this representation of constraint atoms, we generalize the Gelfond-Lifschitz transformation and apply it to define stable models (also called answer sets) for logic programs with arbitrary constraint atoms. The resulting semantics turns out to coincide with the one defined by Son et al. (2007), which is based on a fixpoint approach. One advantage of our approach is that it can be applied, in a natural way, to define stable models for disjunctive logic programs with constraint atoms, which may appear in the disjunctive head as well as in the body of a rule. As a result, our approach to the stable model semantics for logic programs with constraint atoms generalizes a number of previous approaches. Second, we show that our abstract representation of constraint atoms provides a means to characterize dependencies of atoms in a program with constraint atoms, so that some standard characterizations and properties relying on these dependencies in the past for logic programs with ordinary atoms can be extended to logic programs with constraint atoms.
机译:本文研究具有(抽象)约束原子的逻辑程序的稳定模型语义及其特性。我们引入了这些约束原子的简洁抽象表示,其中约束原子被紧凑地表示。我们展示了两个应用程序。首先,在约束原子的这种表示形式下,我们推广了Gelfond-Lifschitz变换并将其应用于定义具有任意约束原子的逻辑程序的稳定模型(也称为答案集)。结果产生的语义与Son等人定义的语义一致。 (2007),它是基于固定点方法的。我们的方法的优点之一是,它可以自然地应用于带有约束原子的析取逻辑程序的稳定模型的定义,该模型可以出现在析取头中以及规则主体中。结果,我们对于具有约束原子的逻辑程序的稳定模型语义的方法概括了许多先前的方法。其次,我们证明了约束原子的抽象表示提供了一种方法来表征具有约束原子的程序中原子的依存关系,因此过去对于具有普通原子的逻辑程序而言,依赖于这些依存关系的一些标准表征和特性可以扩展为具有约束原子的逻辑程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号