首页> 外文期刊>Theory and Practice of Logic Programming >Constraint-Based Inference in Probabilistic Logic Programs
【24h】

Constraint-Based Inference in Probabilistic Logic Programs

机译:概率逻辑程序中基于约束的推理

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic Logic Programs (PLPs) generalize traditional logic programs and allow the encoding of models combining logical structure and uncertainty. In PLP, inference is performed by summarizing the possible worlds which entail the query in a suitable data structure, and using this data structure to compute the answer probability. Systems such as ProbLog, PITA, etc., use propositional data structures like explanation graphs, BDDs, SDDs, etc., to represent the possible worlds. While this approach saves inference time due to substructure sharing, there are a number of problems where a more compact data structure is possible. We propose a data structure called Ordered Symbolic Derivation Diagram (OSDD) which captures the possible worlds by means of constraint formulas. We describe a program transformation technique to construct OSDDs via query evaluation, and give procedures to perform exact and approximate inference over OSDDs. Our approach has two key properties. Firstly, the exact inference procedure is a generalization of traditional inference, and results in speedup over the latter in certain settings. Secondly, the approximate technique is a generalization of likelihood weighting in Bayesian Networks, and allows us to perform sampling-based inference with lower rejection rate and variance. We evaluate the effectiveness of the proposed techniques through experiments on several problems.
机译:概率逻辑程序(PLP)概括了传统的逻辑程序,并允许对结合了逻辑结构和不确定性的模型进行编码。在PLP中,通过在适当的数据结构中汇总涉及查询的可能世界并使用此数据结构来计算答案概率,来进行推断。 ProbLog,PITA等系统使用命题数据结构(例如解释图,BDD,SDD等)来表示可能的世界。尽管此方法由于子结构共享而节省了推理时间,但存在许多可能实现更紧凑的数据结构的问题。我们提出了一种称为有序符号推导图(OSDD)的数据结构,该结构通过约束公式来捕获可能的世界。我们描述了一种通过查询评估构造OSDD的程序转换技术,并给出了对OSDD执行精确和近似推断的过程。我们的方法具有两个关键特性。首先,确切的推理过程是对传统推理的概括,并导致在某些情况下优于传统推理。其次,近似技术是贝叶斯网络中似然加权的一般化,它使我们能够以较低的拒绝率和方差执行基于采样的推理。我们通过对几个问题进行实验来评估所提出技术的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号