首页> 外文期刊>Theory of computing systems >Streaming Algorithms for Bin Packing and Vector Scheduling
【24h】

Streaming Algorithms for Bin Packing and Vector Scheduling

机译:垃圾箱和矢量调度的流媒体算法

获取原文
获取原文并翻译 | 示例

摘要

Problems involving the efficient arrangement of simple objects, as captured by bin packing and makespan scheduling, are fundamental tasks in combinatorial optimization. These are well understood in the traditional online and offline cases, but have been less well-studied when the volume of the input is truly massive, and cannot even be read into memory. This is captured by the streaming model of computation, where the aim is to approximate the cost of the solution in one pass over the data, using small space. As a result, streaming algorithms produce concise input summaries that approximately preserve the optimum value. We design the first efficient streaming algorithms for these fundamental problems in combinatorial optimization. For Bin Packing, we provide a streaming asymptotic (1 + epsilon)-approximation with (O) over tilde (1/epsilon), where (O) over tilde hides logarithmic factors. Moreover, such a space bound is essentially optimal. Our algorithm implies a streaming (d + epsilon)-approximation for VECTOR BIN PACKING in d dimensions, running in space (O) over tilde (d/epsilon). For the related VECTOR SCHEDULING problem, we show how to construct an input summary in space (O) over tilde (d(2) . m/epsilon(2)) that preserves the optimum value up to a factor of 2 - 1/m + epsilon, where m is the number of identical machines.
机译:涉及简单对象的有效安排的问题,由箱包装和Makespans调度捕获,是组合优化中的基本任务。这些在传统的在线和离线案例中得到了很好的理解,但是当输入的数量真正巨大时,甚至无法读入内存时已经更少地研究。这是由计算的流模型捕获的,其中目的是使用小空间近似于通过数据的一个传递解决方案的成本。结果,流算法产生简洁的输入概述,即大致保持最佳值。我们设计了组合优化中这些基本问题的第一高效流算法。对于箱包装,我们提供血液渐近(1 + epsilon) - 用(o)over tilde(1 / epsilon),在其中(o)覆盖标准因子。此外,这种空间绑定基本上是最佳的。我们的算法暗示了一种流(D + epsilon) - 在D尺寸下的矢量箱包装的千克夸张,在Tilde(D / epsilon)上空(O)中运行。对于相关的向量调度问题,我们展示了如何在数字(D(2)上的空间(O)中构建输入摘要+ epsilon,其中m是相同机器的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号