首页> 外文期刊>Theory of computing systems >Effective Categoricity of Automatic Equivalence and Nested Equivalence Structures
【24h】

Effective Categoricity of Automatic Equivalence and Nested Equivalence Structures

机译:自动等效和嵌套等效结构的有效分类

获取原文
获取原文并翻译 | 示例

摘要

We study automatic equivalence and nested equivalence structures. The goal is to compare and contrast these automatic structures with computable equivalence and nested equivalence structures. Equivalence structures A may be characterized by their characters x (A) which encodes the number of equivalence classes of any given size. The characters of computably categorical, △_2~0 categorical but not computably categorical, or △_3~0 categorical but not △_2~0, categorical have been determined. We show that every computably categorical equivalence structure has an automatic copy, but not every △_2~0 categorical structure has an automatic copy. We construct an automatic equivalence structure which is △_2~0 categorical but not computably categorical and another automatic equivalence structure which is not △_2~0 categorical. We observe that the theory of an automatic equivalence structure is decidable and hence the character of any automatic equivalence structure is computable. On the other hand, there is a computable character which is not the character of any automatic equivalence structure. We show that any two automatic equivalence structures which are isomorphic are in fact computably isomorphic. Moreover, we show that for certain characters, there is always a exponential time isomorphism between two automatic equivalence structures with that character. Finally, we briefly consider nested equivalence structures and construct an automatic nested equivalence structure that is not △_3~0 categorical but △_4~0 categorical and an automatic nested equivalence structure that is not △_4~0 categorical.
机译:我们研究自动等价和嵌套等价结构。目标是将这些自动结构与可计算的等价和嵌套等价结构进行比较和对比。等效结构A可以由它们的字符x(a)的特征在于,它们编码任何给定大小的等效类的数量。可计算地分类的字符,△_2〜0分类但不是计算地分类,或者△_3〜0分类而不是△_2〜0,已经确定了分类。我们表明,每个可算可方形的分类等价结构都有一个自动副本,但不是每一个_2〜0分类结构具有自动副本。我们构建一个自动等价结构,它是△_2〜0分类但不是可计算的分类,另一个自动等效结构不是△_2〜0分类。我们观察到自动等效结构的理论是可判定的,因此可以使用任何自动等效结构的特征。另一方面,存在一个可计算的字符,这不是任何自动等效结构的特征。我们表明,任何两个自动等效结构都实际上是可计算的同性。此外,我们表明对于某些角色,在具有该字符的两个自动等效结构之间总是存在指数时间同构。最后,我们简要考虑嵌套等价结构并构建一个自动嵌套的等价结构,该结构不是△_3〜0分类但△_4〜0分类和自动嵌套等效结构不是△_4〜0分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号