首页> 外文期刊>Theory of computing systems >A lower bound technique for nondeterministic graph-driven read-once-branching programs and its applications
【24h】

A lower bound technique for nondeterministic graph-driven read-once-branching programs and its applications

机译:非确定性图驱动的一次读取分支程序的下限技术及其应用

获取原文
获取原文并翻译 | 示例

摘要

We present a new lower bound technique for a restricted branching program model, namely for nondeterministic graph-driven read-once branching, programs (g.d.-BPls). The technique is derived by drawing a connection between omega-nondeterministic g.d.-BP Is and omega-nondeterininistic communication complexity (for the nondeterministic acceptance modes omega is an element of {boolean OR, boolean AND, +}). We apply the technique in order to prove an exponential lower bound for integer multiplication for omega-nondeterministic well-structured g.d.-BP1s. (For omega = + an exponential lower bound was already obtained in [5] by using a different technique.) Further, we use the lower bound technique to prove for an explicitly defined function which can be represented by polynomial size omega-nondeterministic BP1s that it has exponential complexity in the omega-nondeterministic well-structured g.d.-BP1 model for omega is an element of {boolean OR, +}. This answers an open question from Brosenne et al. [7], whether the nondeterministic BP1 model is in fact more powerful than the well-structured graph-driven variant.
机译:我们为受限分支程序模型提供了一种新的下限技术,即用于不确定性图驱动的一次性分支程序(g.d.-BPls)。该技术是通过绘制omega-不确定性g.d.-BP Is与omega-非确定性通信复杂性之间的联系而得出的(对于非确定性接受模式,omega是{boolean OR,boolean AND,+}的元素)。我们应用该技术是为了证明Ω不确定的结构良好的g.d.-BP1s的整数乘法的指数下界。 (对于omega = +,在[5]中已经通过使用另一种技术获得了指数下界。)此外,我们使用下界技术来证明对于一个明确定义的函数,该函数可以由多项式大小的ω-不确定BP1表示,在omega-o不确定性结构良好的gd-BP1模型中,它具有指数复杂性,因为omega是{boolean OR,+}的元素。这回答了Brosenne等人的一个悬而未决的问题。 [7],不确定性BP1模型是否实际上比结构良好的图驱动变量更强大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号