首页> 外文期刊>Theory of computing systems >Towards Optimal Degree Distributions for Left-Perfect Matchings in Random Bipartite Graphs
【24h】

Towards Optimal Degree Distributions for Left-Perfect Matchings in Random Bipartite Graphs

机译:随机二部图中左向匹配的最佳度分布

获取原文
获取原文并翻译 | 示例

摘要

Consider a random bipartite multigraph G with n left nodes and m a parts per thousand yen na parts per thousand yen2 right nodes. Each left node x has d (x) a parts per thousand yen1 random right neighbors. The average left degree Delta is fixed, Delta a parts per thousand yen2. We ask whether for the probability that G has a left-perfect matching it is advantageous not to fix d (x) for each left node x but rather choose it at random according to some (cleverly chosen) distribution. We show the following, provided that the degrees of the left nodes are independent: If Delta is an integer, then it is optimal to use a fixed degree of Delta for all left nodes. If Delta is non-integral, then an optimal degree-distribution has the property that each left node x has two possible degrees, aOES Delta aOE < and aOE Delta aOE parts per thousand, with probability p (x) and 1-p (x) , respectively, where p (x) is from the closed interval [0,1] and the average over all p (x) equals aOE Delta aOE parts per thousand a'Delta. Furthermore, if c=n/m and Delta > 2 are constant, then each distribution of the left degrees that meets the conditions above determines the same threshold c (au)(Delta) that has the following property as n goes to infinity: If c < c (au)(Delta) then asymptotically almost surely there exists a left-perfect matching. If c > c (au)(Delta) then asymptotically almost surely there exists no left-perfect matching. The threshold c (au)(Delta) is the same as the known threshold for offline k-ary cuckoo hashing for integral or non-integral k=Delta.
机译:考虑一个随机的二部图,它有n个左节点和m个千分之千,n个千分之二的右节点。每个左节点x每千日元1个随机右邻居中有d(x)个部分。平均左度Δ是固定的,Δ是千分之一。我们询问对于G具有左完美匹配的概率,是否不为每个左节点x固定d(x),而是根据某个(明智选择的)分布随机选择它,是否有利。如果左节点的度数是独立的,我们将显示以下内容:如果Delta是整数,则对所有左节点使用固定的Delta度是最佳的。如果Delta是非整数的,则最佳的度数分布具有以下属性:每个左节点x具有两个可能的度数,即aOES Delta aOE <和aOE Delta aOE千分之一,概率为p(x)和1-p(x ),其中p(x)来自封闭区间[0,1],所有p(x)的平均值等于aOE Delta aOE千分之一a'Delta。此外,如果c = n / m且Delta> 2是常数,则满足上述条件的左度的每个分布将确定相同的阈值c(au)Δ,因为n变为无穷大,因此具有以下特性: c c(au)Δ,那么渐近几乎可以肯定不存在左完美匹配。阈值c(au)Δ与用于积分k或非积分k = Delta的离线kary杜鹃哈希的已知阈值相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号