首页> 外文期刊>Theory of computing systems >Polynomial-Time Algorithms for Checking Some Properties of Boolean Functions Given by Polynomials
【24h】

Polynomial-Time Algorithms for Checking Some Properties of Boolean Functions Given by Polynomials

机译:用于检查由多项式给出的布尔函数的某些属性的多项式时间算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we show that checking some properties of Boolean functions which are given by the lists of monomials in their polynomial representations can be implemented in polynomial time. Multi-linear polynomials over GF(2) are often a convenient way to represent Boolean functions. There is a single polynomial for each Boolean function, and the length of the polynomial (i.e. the number of its monomials) which represents a function of n variables can be far less than 2(n). Therefore, in some cases, polynomials are a compressed description of Boolean functions. Besides, polynomial representations of Boolean functions have applications in circuit lower bounds, computational learning, error-correcting codes, cryptography. We construct polynomial-time algorithms for checking some properties of Boolean functions which are given by the lists of monomials in their polynomial representations. The considered properties are self-anti-duality (evenness), self-duality, periodicity, 1-invariance (Mobius transform invariance, coincidence). Note that checking each of these properties directly by definition gives, in the general case, only exponential-time algorithms. The approach to construct our algorithms is the following. Firstly, we prove that if a Boolean function has a certain property then its polynomial has a special structure. And secondly, we check the property by its characterization, cutting negative cases by proven facts. More precisely, we analyze an exponential time algorithm and prove that if the number of steps of the algorithm exceeds a bound, which is polynomial in the input size, and may be computed in advance, then the input will be necessarily rejected.
机译:在本文中,我们证明检查多项式表示形式中的单项式列表所给出的布尔函数的某些属性可以在多项式时间内实现。 GF(2)上的多线性多项式通常是表示布尔函数的便捷方式。每个布尔函数都有一个多项式,并且代表n个变量的函数的多项式的长度(即其单项式的数目)可能远远小于2(n)。因此,在某些情况下,多项式是布尔函数的压缩描述。此外,布尔函数的多项式表示还可以应用于电路下限,计算学习,纠错码,密码学。我们构造多项式时间算法来检查布尔函数的某些属性,这些函数由多项式的多项式表示形式中的列表给出。所考虑的属性是自对偶性(均匀性),自对偶性,周期性,1-不变性(Mobius变换不变性,巧合)。请注意,在一般情况下,通过定义直接检查这些属性中的每一个,只会给出指数时间算法。下面是构造我们的算法的方法。首先,我们证明如果布尔函数具有某种属性,则其多项式具有特殊的结构。其次,我们通过特性来检查属性,并通过已证明的事实来排除负面案例。更准确地说,我们分析了指数时间算法,并证明了,如果算法的步数超出了界限(在输入大小上是多项式,并且可以预先计算),则必然会拒绝输入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号