首页> 外文期刊>Theoretical and Computational Fluid Dynamics >Hamiltonian structure for a neutrally buoyant rigid body interacting with N vortex rings of arbitrary shape: the case of arbitrary smooth body shape
【24h】

Hamiltonian structure for a neutrally buoyant rigid body interacting with N vortex rings of arbitrary shape: the case of arbitrary smooth body shape

机译:中性浮力刚体与任意形状的N个涡旋环相互作用的哈密顿结构:任意光滑体形的情况

获取原文
获取原文并翻译 | 示例

摘要

We present a (noncanonical) Hamiltonian model for the interaction of a neutrally buoyant, arbitrarily shaped smooth rigid body with N thin closed vortex filaments of arbitrary shape in an infinite ideal fluid in Euclidean three-space. The rings are modeled without cores and, as geometrical objects, viewed as N smooth closed curves in space. The velocity field associated with each ring in the absence of the body is given by the Biot–Savart law with the infinite self-induced velocity assumed to be regularized in some appropriate way. In the presence of the moving rigid body, the velocity field of each ring is modified by the addition of potential fields associated with the image vorticity and with the irrotational flow induced by the motion of the body. The equations of motion for this dynamically coupled body-rings model are obtained using conservation of linear and angular momenta. These equations are shown to possess a Hamiltonian structure when written on an appropriately defined Poisson product manifold equipped with a Poisson bracket which is the sum of the Lie–Poisson bracket from rigid body mechanics and the canonical bracket on the phase space of the vortex filaments. The Hamiltonian function is the total kinetic energy of the system with the self-induced kinetic energy regularized. The Hamiltonian structure is independent of the shape of the body, (and hence) the explicit form of the image field, and the method of regularization, provided the self-induced velocity and kinetic energy are regularized in way that satisfies certain reasonable consistency conditions.
机译:我们提出了一个(非规范的)哈密顿模型,用于在欧氏三空间中的无限理想流体中,中性浮力,任意形状的光滑刚体与N个任意形状的闭合细涡旋丝的相互作用。环被建模为没有芯,并且作为几何对象,被视为空间中的N条平滑闭合曲线。 Biot–Savart定律给出了与不存在物体的每个环相关的速度场,其中无限的自感应速度假定以某种适当的方式进行了正则化。在运动的刚体存在的情况下,每个环的速度场通过添加与图像涡度以及由物体的运动引起的非旋流相关的势场来修改。使用线性和角动量守恒来获得此动态耦合的体环模型的运动方程。当在适当定义的配备泊松支架的泊松产品流形上书写时,这些方程式显示具有哈密顿结构,泊松支架是刚体力学的Lie-泊松支架与涡旋丝相空间上的规范支架之和。汉密尔顿函数是系统的总动能,自感应动能已正规化。哈密​​顿结构与物体的形状无关,因此与图像场的显式形式无关,并且与正则化方法无关,只要以符合某些合理一致性条件的方式对自感应速度和动能进行正则化即可。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号