首页> 外文期刊>Theoretical and applied climatology >Monthly rainfall prediction using wavelet regression and neural network: an analysis of 1901-2002 data, Assam, India
【24h】

Monthly rainfall prediction using wavelet regression and neural network: an analysis of 1901-2002 data, Assam, India

机译:基于小波回归和神经网络的月降雨量预测:对1901-2002年数据的分析,印度阿萨姆邦

获取原文
获取原文并翻译 | 示例

摘要

Rainfall is a principal element of the hydrological cycle and its variability is important from both the scientific as well as practical point of view. Wavelet regression (WR) technique is proposed and developed to analyze and predict the rainfall forecast in this study. The WR model is unproved combining two methods, discrete wavelet transform and linear regression model. This study uses rainfall data from 21 stations in Assam, India over 102 years from 1901 to 2002. The calibration and validation performance of the models is evaluated with appropriate statistical methods. The root mean square errors (RMSEE) N-S index, and correlation coefficient (R) statistics were used for evaluating the accuracy of the WR models. The accuracy of the WR models was then compared with those of the artificial neural networks (ANN) models. The results of monthly rainfall series modeling indicate that the performances of wavelet regression models are found to be more accurate than the ANN models.
机译:降雨是水文循环的主要因素,从科学和实践的角度来看,其变化性都很重要。提出并发展了小波回归(WR)技术来分析和预测本研究中的降雨预报。 WR模型未经验证,结合了两种方法:离散小波变换和线性回归模型。这项研究使用的是印度阿萨姆邦21个站点从1901年到2002年102年间的降雨数据。使用适当的统计方法对模型的校准和验证性能进行了评估。均方根误差(RMSEE)N-S指数和相关系数(R)统计量用于评估WR模型的准确性。然后将WR模型的准确性与人工神经网络(ANN)模型的准确性进行比较。每月降雨序列建模的结果表明,发现小波回归模型的性能比ANN模型更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号